Acknowledgement
이 연구는 한국지질자원연구원의 주요사업인 "국내 바나듐(V) 등 에너지 저장광물 정밀탐사기술 개발 및 부존량 예측(21-3211)" 과제(GP2020-007)의 일환으로 수행되었습니다. 또한, 이 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20194010201920).
References
- Auken, E., Christiansen, A. V., Westergaard, J. H., Kirkegaard, C., Foged, N., and Viezzoli, A., 2009, An integrated processing scheme for high-resolution airborne electromagnetic surveys, the SkyTEM system, Explor. Geophys., 40(2), 184-192, https://doi.org/10.1071/EG08128
- Ball, V., Blangy, J. P., Schiott, C., and Chaveste, A., 2014, Relative rock physics, TLE, 33(3), 276-286, https://doi.org/10.1190/tle33030276.1
- Bang, E. S., Son, J. S., Kang, W., Yi, H., Kim, C., Lee, C. W., Kim, B., Hwang, S., No, S., Son, Y., and Cho, S. J., 2020, Development of a Drone Platform by KIGAM for Geological Surveys and Mineral Resource Exploration, Geophys. and Geophys. Explor., 23(3), 141-148 (in Korean with English abstract), https://doi.org/10.7582/GGE.2020.23.3.00141
- Bang, M., Oh, S., Seol, S. J., Lee, K. H., and Cho, S. J., 2018, Theoretical Research for Unmanned Aircraft Electromagnetic Survey: Electromagnetic field calculation and analysis by arbitrary shaped transmitter-loop, Geophys. and Geophys. Explor., 21(3), 150-161 (in Korean with English abstract), https://doi.org/10.7582/GGE.2018.21.3.150
- Bang, M., Oh, S., Noh, K., Seol, S. J., and Byun, J., 2021, Imaging subsurface orebodies with airborne electromagnetic data using a recurrent neural network, Geophysics, 86(6), 407-419, https://doi.org/10.1190/geo2020-0871.1
- Cho, I. K., Kim, R. Y., and Yi, M. J., 2015, One-dimensional modeling of airborne transient electromagnetic using a long grounded-wire source, Geophys. and Geophys. Explor., 18(4), 216-222 (in Korean with English abstract), https://doi.org/10.7582/GGE.2015.18.4.216
- Cho, I. K., Jang, J. H., Rim, H. R., and Yi, M. J., 2017, Laterally constrained inversion of GREATEM data, Geophys. and Geophys. Explor., 20(1), 33-42 (in Korean with English abstract), https://doi.org/10.7582/GGE.2017.20.1.033
- Chung, Y., Son, J. S., Lee, T. J., Kim, H. J., and Shin, C., 2014, Three-dimensional modelling of controlled-source electromagnetic surveys using an edge finite-element method with a direct solver, Geophys. Prospect., 62(6), 1468-1483, https://doi.org/10.1111/1365-2478.12132
- Dobrovolskiy, A., Brass, Kristaps., 2021, GPR on a drone-Practical experience gained in the past three years, First Internat. Mtg for Applied Geoscience and Energy., Soc. Expl. Geophys., Expanded Abstracts, 3048-3052, https://doi.org/10.1190/segam2021-3591560.1
- Fournier, D., Kang, S., McMillan, M. S., and Oldenburg, D. W., 2017, Inversion of airborne geophysics over the DO-27/DO18 kimberlites - Part 2: Electromagnetics. Interpretation, 5(3), T313-T325, https://doi.org/10.1190/INT-2016-0140.1
- Giles, C. L., Lawrence, S., and Tsoi, A. C., 2001, Noisy time series prediction using recurrent neural networks and grammatical inference, Mach. Learn., 44(1), 161-183, doi: 10.1023/A:1010884214864
- Hammack, R., Veloski, G., Schlagenhauf, M., Lowe, R., Zorn, A., and Wylie, L., 2020, Using drone-mounted geophysical sensors to map legacy oil and gas infrastructure, URTEC 2020, 3517-3528, https://doi.org/10.15530/urtec-2020-2876
- Kang, H., Bang, M., Kim, Y. S., and Seol, S. J., 2021, Analysis of test data obtained from hybrid-type unmanned aerial electromagnetic system, 2021 Spring Conference of KSEG, 32 (in Korean).
- Kim, H. J., Song, Y., and Lee, K. H., 1997, High-frequency electromagnetic inversion for a dispersive layered earth, J. Geomag. Geoelec., 49(11-12), 1439-1450, https://doi.org/10.5636/jgg.49.1439
- Noh, K., Yoon, D., and Byun, J., 2020, Imaging subsurface resistivity structure from airborne electromagnetic induction data using deep neural network, Explor. Geophys., 51(2), 214-220, https://doi.org/10.1080/08123985.2019.1668240
- Oh, S., Noh, K., Yoon, D., Seol, S. J., and Byun, J., 2018, Salt delineation from electromagnetic data using convolutional neural networks, IEEE Geosci. Remote. Sens. Lett., 16(4), 519-523, https://doi.org/10.1109/LGRS.2018.2877155
- Pfaffhuber, A., Anschuetz, H., Rafezi, H., Novo, A., Hassani, F. P., Sorensen, K. I., Liu, W., Chen, R., Wu, H., Qiu, J., Yao, H., Shen, R., Ren, Q., Chang, F., Zeng, P., Luo, W., Hodges, G., Garrie, D., Christensen, C., Legault, J. M., Toop, D., Oldenborger, G. A., Plastow, G., Bournas, N., Han, Z., Orta, M., Fage, I., Hodges, G., Chen, T., Cox, L., Endo, M., Zhdanov, M., Paine, J. G., Collins, E. W., Costard, L., Baranwal, V., Ronning, J. S., Solberg, I.-L., Dalsegg, E., Tonnesen, J. F., and Ahmed, S., 2015, Airborne geophysics, remote sensing, UAV (drone)-based surveys and mining geophysics, Symp. Appl. Geophyics Eng. Environ. Probl., 40-53, https://doi.org/10.4133/SAGEEP.28-005
- Puzyrev, V., 2019, Deep learning electromagnetic inversion with convolutional neural networks, Geophys. J. Int., 218(2), 817-832, https://doi.org/10.1093/gji/ggz204