Proceedings of the Korea Multimedia Society Conference
/
2002.05d
/
pp.1046-1051
/
2002
본 논문에서는 웨이브릿 변환 영상에서 객체 영역을 인식하는 새로운 필터링 방법을 제안하고, 제안한 방법을 이용하여 객체 기반 영상검색 방법을 비교 분석한다. 기존의 방법은 특징벡터를 웨이브릿 변환 영상의 부대역 전체에서 추출하기 때문에 불필요한 배경정보가 포함됨으로써 검색효율이 감소하였다. 그러나 제안한 방법은 객체영역에서 특징벡터를 추출하므로 더욱 정확한 정보가 추출될 뿐 아니라, 불필요한 배경정보를 제거함으로써 검색효율을 향상시키며, 객체의 위치나 크기에 상관없이 검색효율을 일정하게 유지한다.
The main objective of this paper is to provide a methodology of feature extraction using shape of image objects for content-based image retrieval. The shape of most real-life objects is irregular, and hence there is no universal approach to quantify the shape of an arbitrary object. In particular. electronic catalogs contain many image objects for their products. In this paper, we perform feature extraction based on individual objects in images rather than on the whole image itself, since our method uses a shape-based approach of objects using RLC lines within an image. Experiments show that shape parameters distinctly represented image objects and provided better classification and discrimination among image objects in an image database compared to Texture.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.155-158
/
2002
본 논문은 영역기반의 영상 검색을 위해 향상된 영역 매칭 알고리즘을 구현하고자 한다. 최근의 Mpeg-7표준은 객체 기반의 영상처리를 특징으로 하고 있으며, 객체 기반의 영상 처리방법들에서 가장 대표적인 방법인 영역기반 검색 방법은 영역 분할과 특징 추출, 그리고 영역매칭을 통한 유사도 측정에 따른 검색으로 나뉘어 진다. 본 논문에서는 영상을 분할한 후 분할된 영역들에 대한 특징을 추출 하고, 추출된 특징들을 다차원 특징 공간에서의 클러스터로 구성한다. 그리고 구성된 클러스터들을 인접한 중심을 가진 특징 그룹화 하여 특징 그룹 중심간의 거리차를 이용하여 질의 이미지와 검색 이미지의 유사도를 측정하는 영역 매칭 방법을 제안한다.
교통사고 예측은 차량의 블랙박스 동영상을 통해 사고 발생을 최대한 빨리 예측하는 것을 목표로 한다. 이는 안전한 자율주행 시스템을 보장하는 데 중요한 역할을 한다. 다양한 교통 상황과 카메라의 제한된 시야로 인해 프레임에서 사고 가능성을 조기에 관찰하는 것은 어려운 도전이다. 예측의 핵심 기술은 객체의 시공간 관계를 학습하는 것이다. 본 논문에서는 블랙박스 동영상에서 사고 예측을 위한 계산 모델을 제안한다. 이것을 사용하여 사고 예방을 강화한다. 이 모델은 사고 위험에 대한 운전자의 시각적 인식에서 영감을 받았다. 객체 탐지기는 동영상 프레임에서 다양한 객체를 탐지한다. 탐지한 객체는 노드 생성기와 특징 추출기 동시에 통과한다. 노드 생성기에서 생성한 노드는 GCN 실행기를 사용한다. GCN 실행기는 각 프레임에 대한 객체의 3D 위치 관계를 계산한 후 공간 특징을 취득한다. 동시에 공간 특징과 특징 추출기에서 얻은 객체의 특징은 GRU 실행기로 보내진다. GRU 실행기 안에 시공간 특징을 암기하고 분석하여 교통사고 확률을 예측한다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2000.11a
/
pp.391-395
/
2000
본 논문에서는 영상을 구성하는 객체들이 가지고있는 형태 특징을 이용한 영상 검색 시스템을 제안한다. 형태 특징을 추출하기 위한 과정은 입력 영상에 Chain Code를 이용 경계면의 좌표와 길이를 구하는 과정, 경계면에 대한 무게 중심 추출과정으로 구성되고, 무게 중심으로부터 경계면 까지 거리의 합, 표준 편차, 장축/단축 비율 그리고 히스토그램 등을 특징 정보로 이용한다. 영상을 이루는 객체의 회전이나, 이동 등으로 인한 변화에 둔감하게 하고 형태 특징 중심으로 영상을 검색하도록 설계하였다. 실험 대상으로는 170개의 폐곡선을 이루는 이진 도형 영상에 대한 검색 실험을 실시하였다.
Proceedings of the Korea Contents Association Conference
/
2016.05a
/
pp.435-436
/
2016
최근 객체인식 분야에서는 Convolutional Neural Network (CNN)이 주목받고 있다. CNN의 특징 중 하나는 입력이미지로 부터 특징 추출 방법을 스스로 학습한다는 것이다. 전통적은 객체인식 방법에서는 hand-written feature extractor를 사용하지만, CNN은 스스로가 특징을 추출한다. 하지만 CNN은 많은 학습데이터와 학습 시간을 필요로 한다. 우리는 객체인식 데이터로 사전학습된 CNN을 사용하여 특징을 추출하였고, 이 특징으로 People re-identification을 수행하였다. 이 과정에서 어떠한 학습도 하지 않았지만 CNN은 다른 영상처리 응용에 대해서도 비교적 좋은 성능을 보여주었다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.2
/
pp.48-55
/
2008
In this paper we propose a novel method for image retrieval system using image segmentation and salient points. The proposed method consists of four steps. In the first step, images are segmented into several regions by JSEG algorithm. In the second step, for the segmented regions, dominant colors and the corresponding color histogram are constructed. By using dominant colors and color histogram, we identify candidate regions where objects may exist. In the third step, real object regions are detected from candidate regions by SIFT matching. In the final step, we measure the similarity between the query image and DB image by using the color correlogram technique. Color correlogram is computed in the query image and object region of DB image. By experimental results, it has been shown that the proposed method detects multi-object very well and it provides better retrieval performance compared with object-based retrieval systems.
본 논문은 조명변화가 심한 주변환경에서 동적객체의 특징정보를 안정적으로 추출하는 기법을 제시한다. 제안기법에서는 우선 조명변화의 효과를 최소화 하기위해 HSI 컬러공간에서 색상(Hue) 강도 및 색상기울기에 대한 평균값과 표준편차 값으로 이루어진 배경모델을 생성한다. 실시간으로 입력되는 동적 객체를 포함한 연속영상에 대하여 각 화소에 대한 색상(Hue) 성분을 추출하고 이웃 화소와의 색상성분에 대한 기울기 크기를 계산한다. 이를 기구축된 배경모델과 비교하여 그 차분값이 일정 임계값을 초과하는 경우 동적 객체의 영역으로 판별한다. 마지막으로 모폴로지 연산을 수행하여 배경영상의 노이즈 영역을 제거한다. 본 논문에서는 기존 동적객체 추출기법과 제안기법을 핸드 트래킹과 전체 몸 움직임 추적의 비교실험을 통하여 제안 기법의 안정성을 보였다. 제안 기법은 극심한 조명변화에 강건하게 동적 객체의 영역정보를 실시간 추출하였다.
비디오객체 추출 기법은 MPEG-4 및 MPEG-7의 응용을 목표로 최근 활발하게 연구되고 있다. 이들 연구는 객체 추출의 전체적인 구조와 정확한 윤곽선 검출 알고리즘의 개발에 초점을 맞추고 있으며 제한적인 조건하에서 만족할 만한 성능을 내고 있다 그러나, 카메라 움직임, 객체의 빠른 움직임, 비강체 운동 등 보다 일반적인 상황에서는 객체 추출의 안정성이 떨어진다. 본 논문에서는 객체 추출의 안정성을 높이기 위해 칼라, 움직임 정보 등의 특징정보(feature)가 균일한 영역으로 사전분할하고, 분할된 균일영역을 추적하는 알고리즘을 제안한다. 추적된 균일 영역간의 경계는 각 영역의 통계적 분포와 영역경계의 윤곽선으로 정의된 에너지를 레벨셑 방법으로 최소화함으로 조정된다.
Proceedings of the Korean Society of Computer Information Conference
/
2008.06a
/
pp.205-209
/
2008
본 논문은 입력되는 영상에서 특정 객체를 찾기 위하여 특징 검출 및 매칭 결과를 분석하여 기술한다. 영상의 특징을 추출하는 방법 중 코너를 특징으로 하는 방법인 해리스 코너 검출(Harris corner detection)을 이용하여 코너를 추출하였으며, 추출한 특징을 이용하여 다양한 크기의 템플릿을 만들어 입력된 영상과 상관계수를 구해 최대값을 가지는 위치를 찾아 입력된 영상과 객체를 매칭 시킨 결과를 분석하였다. 본 논문의 연구 결과들은 객체의 탐지 등과 같은 영상 분석 기반 기술에 활용될 수 있으리라 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.