• Title/Summary/Keyword: 객체 특징 추출

Search Result 421, Processing Time 0.032 seconds

A Object Region Recognition on the Wavelet Transform Image (웨이브릿 변환 영상에서 객체 영역 인식)

  • 류권열;강경원;이경환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.1046-1051
    • /
    • 2002
  • 본 논문에서는 웨이브릿 변환 영상에서 객체 영역을 인식하는 새로운 필터링 방법을 제안하고, 제안한 방법을 이용하여 객체 기반 영상검색 방법을 비교 분석한다. 기존의 방법은 특징벡터를 웨이브릿 변환 영상의 부대역 전체에서 추출하기 때문에 불필요한 배경정보가 포함됨으로써 검색효율이 감소하였다. 그러나 제안한 방법은 객체영역에서 특징벡터를 추출하므로 더욱 정확한 정보가 추출될 뿐 아니라, 불필요한 배경정보를 제거함으로써 검색효율을 향상시키며, 객체의 위치나 크기에 상관없이 검색효율을 일정하게 유지한다.

  • PDF

Feature Extraction of Shape of Image Objects in Content-based Image Retrieval (내용기반으로한 이미지 검색에서 이미지 객체들의 외형특징추출)

  • Cho, June-Suh
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.823-828
    • /
    • 2003
  • The main objective of this paper is to provide a methodology of feature extraction using shape of image objects for content-based image retrieval. The shape of most real-life objects is irregular, and hence there is no universal approach to quantify the shape of an arbitrary object. In particular. electronic catalogs contain many image objects for their products. In this paper, we perform feature extraction based on individual objects in images rather than on the whole image itself, since our method uses a shape-based approach of objects using RLC lines within an image. Experiments show that shape parameters distinctly represented image objects and provided better classification and discrimination among image objects in an image database compared to Texture.

A Study on Region matching method for Region-based Image Retrieval (영역 기반 이미지 검색을 위한 영역 매칭 방법에 관한 연구)

  • 추연웅;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.155-158
    • /
    • 2002
  • 본 논문은 영역기반의 영상 검색을 위해 향상된 영역 매칭 알고리즘을 구현하고자 한다. 최근의 Mpeg-7표준은 객체 기반의 영상처리를 특징으로 하고 있으며, 객체 기반의 영상 처리방법들에서 가장 대표적인 방법인 영역기반 검색 방법은 영역 분할과 특징 추출, 그리고 영역매칭을 통한 유사도 측정에 따른 검색으로 나뉘어 진다. 본 논문에서는 영상을 분할한 후 분할된 영역들에 대한 특징을 추출 하고, 추출된 특징들을 다차원 특징 공간에서의 클러스터로 구성한다. 그리고 구성된 클러스터들을 인접한 중심을 가진 특징 그룹화 하여 특징 그룹 중심간의 거리차를 이용하여 질의 이미지와 검색 이미지의 유사도를 측정하는 영역 매칭 방법을 제안한다.

  • PDF

A Study on Early Prediction Method of Traffic Accidents (교통사고의 사전 예측 방법 연구)

  • Jin, Renjie;Sung, Yunsick
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.441-442
    • /
    • 2022
  • 교통사고 예측은 차량의 블랙박스 동영상을 통해 사고 발생을 최대한 빨리 예측하는 것을 목표로 한다. 이는 안전한 자율주행 시스템을 보장하는 데 중요한 역할을 한다. 다양한 교통 상황과 카메라의 제한된 시야로 인해 프레임에서 사고 가능성을 조기에 관찰하는 것은 어려운 도전이다. 예측의 핵심 기술은 객체의 시공간 관계를 학습하는 것이다. 본 논문에서는 블랙박스 동영상에서 사고 예측을 위한 계산 모델을 제안한다. 이것을 사용하여 사고 예방을 강화한다. 이 모델은 사고 위험에 대한 운전자의 시각적 인식에서 영감을 받았다. 객체 탐지기는 동영상 프레임에서 다양한 객체를 탐지한다. 탐지한 객체는 노드 생성기와 특징 추출기 동시에 통과한다. 노드 생성기에서 생성한 노드는 GCN 실행기를 사용한다. GCN 실행기는 각 프레임에 대한 객체의 3D 위치 관계를 계산한 후 공간 특징을 취득한다. 동시에 공간 특징과 특징 추출기에서 얻은 객체의 특징은 GRU 실행기로 보내진다. GRU 실행기 안에 시공간 특징을 암기하고 분석하여 교통사고 확률을 예측한다.

Object Oriented Retrieval using Shape Feature (형태 특징을 이용한 객체 중심 검색)

  • 정성호;김석현;황병곤
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.391-395
    • /
    • 2000
  • 본 논문에서는 영상을 구성하는 객체들이 가지고있는 형태 특징을 이용한 영상 검색 시스템을 제안한다. 형태 특징을 추출하기 위한 과정은 입력 영상에 Chain Code를 이용 경계면의 좌표와 길이를 구하는 과정, 경계면에 대한 무게 중심 추출과정으로 구성되고, 무게 중심으로부터 경계면 까지 거리의 합, 표준 편차, 장축/단축 비율 그리고 히스토그램 등을 특징 정보로 이용한다. 영상을 이루는 객체의 회전이나, 이동 등으로 인한 변화에 둔감하게 하고 형태 특징 중심으로 영상을 검색하도록 설계하였다. 실험 대상으로는 170개의 폐곡선을 이루는 이진 도형 영상에 대한 검색 실험을 실시하였다.

  • PDF

Layer-wise Feature Extraction Capacity using Pre-trained CNN (사전학습된 CNN의 계층별 특징추출능력연구)

  • Lee, Jaehwan;Yoon, Sook;Park, Dong Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.435-436
    • /
    • 2016
  • 최근 객체인식 분야에서는 Convolutional Neural Network (CNN)이 주목받고 있다. CNN의 특징 중 하나는 입력이미지로 부터 특징 추출 방법을 스스로 학습한다는 것이다. 전통적은 객체인식 방법에서는 hand-written feature extractor를 사용하지만, CNN은 스스로가 특징을 추출한다. 하지만 CNN은 많은 학습데이터와 학습 시간을 필요로 한다. 우리는 객체인식 데이터로 사전학습된 CNN을 사용하여 특징을 추출하였고, 이 특징으로 People re-identification을 수행하였다. 이 과정에서 어떠한 학습도 하지 않았지만 CNN은 다른 영상처리 응용에 대해서도 비교적 좋은 성능을 보여주었다.

  • PDF

Multi-Object Detection Using Image Segmentation and Salient Points (영상 분할 및 주요 특징 점을 이용한 다중 객체 검출)

  • Lee, Jeong-Ho;Kim, Ji-Hun;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper we propose a novel method for image retrieval system using image segmentation and salient points. The proposed method consists of four steps. In the first step, images are segmented into several regions by JSEG algorithm. In the second step, for the segmented regions, dominant colors and the corresponding color histogram are constructed. By using dominant colors and color histogram, we identify candidate regions where objects may exist. In the third step, real object regions are detected from candidate regions by SIFT matching. In the final step, we measure the similarity between the query image and DB image by using the color correlogram technique. Color correlogram is computed in the query image and object region of DB image. By experimental results, it has been shown that the proposed method detects multi-object very well and it provides better retrieval performance compared with object-based retrieval systems.

Moving Object Feature Extraction for the Gesture Interaction (제스처 인터렉션 지원을 위한 동적 사용자 특징 추출)

  • Lee, Jea-Sung;Choi, Yoo-Joo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.909-914
    • /
    • 2007
  • 본 논문은 조명변화가 심한 주변환경에서 동적객체의 특징정보를 안정적으로 추출하는 기법을 제시한다. 제안기법에서는 우선 조명변화의 효과를 최소화 하기위해 HSI 컬러공간에서 색상(Hue) 강도 및 색상기울기에 대한 평균값과 표준편차 값으로 이루어진 배경모델을 생성한다. 실시간으로 입력되는 동적 객체를 포함한 연속영상에 대하여 각 화소에 대한 색상(Hue) 성분을 추출하고 이웃 화소와의 색상성분에 대한 기울기 크기를 계산한다. 이를 기구축된 배경모델과 비교하여 그 차분값이 일정 임계값을 초과하는 경우 동적 객체의 영역으로 판별한다. 마지막으로 모폴로지 연산을 수행하여 배경영상의 노이즈 영역을 제거한다. 본 논문에서는 기존 동적객체 추출기법과 제안기법을 핸드 트래킹과 전체 몸 움직임 추적의 비교실험을 통하여 제안 기법의 안정성을 보였다. 제안 기법은 극심한 조명변화에 강건하게 동적 객체의 영역정보를 실시간 추출하였다.

  • PDF

Video Object Extraction using Level Set Method (레벨셑 방법을 이용한 비디오 객체 추출)

  • 이광연;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.337-340
    • /
    • 2000
  • 비디오객체 추출 기법은 MPEG-4 및 MPEG-7의 응용을 목표로 최근 활발하게 연구되고 있다. 이들 연구는 객체 추출의 전체적인 구조와 정확한 윤곽선 검출 알고리즘의 개발에 초점을 맞추고 있으며 제한적인 조건하에서 만족할 만한 성능을 내고 있다 그러나, 카메라 움직임, 객체의 빠른 움직임, 비강체 운동 등 보다 일반적인 상황에서는 객체 추출의 안정성이 떨어진다. 본 논문에서는 객체 추출의 안정성을 높이기 위해 칼라, 움직임 정보 등의 특징정보(feature)가 균일한 영역으로 사전분할하고, 분할된 균일영역을 추적하는 알고리즘을 제안한다. 추적된 균일 영역간의 경계는 각 영역의 통계적 분포와 영역경계의 윤곽선으로 정의된 에너지를 레벨셑 방법으로 최소화함으로 조정된다.

  • PDF

Vision based Object Recognition for Autonomous Robot Navigation (로봇의 자율 항해를 위한 비전기반의 객체 인식)

  • Kim, Kwon;Lee, Chang-Woo;Xu, Sudan;Cui, Yao-Huan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.205-209
    • /
    • 2008
  • 본 논문은 입력되는 영상에서 특정 객체를 찾기 위하여 특징 검출 및 매칭 결과를 분석하여 기술한다. 영상의 특징을 추출하는 방법 중 코너를 특징으로 하는 방법인 해리스 코너 검출(Harris corner detection)을 이용하여 코너를 추출하였으며, 추출한 특징을 이용하여 다양한 크기의 템플릿을 만들어 입력된 영상과 상관계수를 구해 최대값을 가지는 위치를 찾아 입력된 영상과 객체를 매칭 시킨 결과를 분석하였다. 본 논문의 연구 결과들은 객체의 탐지 등과 같은 영상 분석 기반 기술에 활용될 수 있으리라 기대된다.

  • PDF