• Title/Summary/Keyword: 객체 특징 추출

Search Result 421, Processing Time 0.027 seconds

Content-based Retrieval System using Object Features (객체 특징을 이용한 내용 기반 검색 시스템)

  • 정성호;황병곤;이상열
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.83-87
    • /
    • 2001
  • 본 연구에서는 입력된 영상을 구성하는 객체의 형태 특징을 이용한 영상 검색 시스템을 제안한다. 현재 MPEG-7의 XM에서 제안된 영상 검색 기술은 정확한 검색이나 유사도를 측정한 수 있는 기능을 가지는 객체정보를 정확하게 추출했다는 가정하에서 기술되고 있다. 그러나 실제 영상에서 물체의 외곽선을 정확히 추출하는 것은 매우 어려우며 물체 내부에 중요한 특징이 있을 때 이를 표현하기도 어렵다. 따라서 현재의 영상 검색 시스템에서는 물체의 추출 없이 물체 외곽선 및 내부 특징에 대한 대략적인 정보를 이용하여 검색을 할 수 있는 형태 위주의 정보가 필요하다. 이를 위해 8방향 chain code를 이용하여 입력 영상으로부터 물체의 중요한 특징 중 하나인 물체의 내부 외부의 경계선을 추출하여 영상의 특징으로 이용한다. 이렇게 함으로써 기존의 물체 추출의 과정없이 형태에 대한 영상 검색을 수행한 수 있다. 형태특징을 얻기 위해서 먼저 체인코드를 이용하여 경계선 추출을 추출하였다. 형태특징으로 객체의 경계선과 무게중심까지의 합, 표준편차 그리고 객체의 장축과 단축 비율 등을 추출하였다. 이러한 형태특징 정보를 이용하여 데이터 베이스에 저장된 영상과 질의 영상을 비교하여 유사도 순위에 따라 후보 영상들을 검색하였다. 환 실험의 결과 크기, 회전 이동 등의 변화에 둔감하였다.

  • PDF

A Feature-Extraction Method based on shapes of 3D Object (3차원 객체의 모양에 기반한 특징추출 기법)

  • 신준섭;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.70-72
    • /
    • 2001
  • 최근 멀티미디어 응용의 증가에 따라 그래픽 데이터를 위한 내용 기반 검색 기술에 대한 연구가 활발히 진행되고 있다. 또한 인터넷 응용분야에서 3차원 그래픽 데이터베이스 사용의 필요성이 대두되고 활용되고 있다. 대부분의 3차원 그래픽 시스템은 사용자에게 그래픽은 검색이 대상이 아니라 단순히 보여주는 역할로 주로 사용되고 있다. 3차원 그래픽객체는 어떤 객체들로 구성되여 있으며 그들의 크기는 어떠한지 등의 정보를 포함하고 있다. 따라서 3차원 그래픽 객체에서는 2차원 그래픽 객체에서는 2차원 이미지보다 의미객체에 대한 정확한 정보를 더 많이 얻어 낼 수 있다. 이러한 사실 때문에 2차원 이미지의 특징추출의 방법과는 다른 형식의 접근이 필요하다. 본 논문에서는 3차원 그래픽으로 모델링 된 3차원 객체들을 대상으로 객체가 이루는 X, Y, Z축상의 비율과 윤곽형태에 대한 SPBT(Space Partitioning Binary Tree)의 결과값으로 특징을 추출하고 샘플 데이터를 통해서 이들간의 클러스터링과 실제 예제 질의를 토한 비교분석을 통해 객체간의 유사검색이 가능하도록 하는 특징추출 방법을 제안하였다. 본 논문에서는 제시한 모양기반 특징추출 방법은 웹상의 다양한 3차원 객체정보의 자동분류나 3차원 그래픽 데이터베이스를 위한 인덱스 구축 등에 활용될 수 있을 것이다.

  • PDF

Vision-based classification of moving objects in the cattle shed (축사에서 비젼 기반의 이동 객체 분류 방법)

  • Kim, Sung Kwan;Lee, Jung Sik;Joo, Young Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1357-1358
    • /
    • 2015
  • 본 논문에서는 축사에서 비젼 기반으로 이동 객체를 분류하는 방법을 제안한다. 제안하는 방법은 축사 내 설치된 CCTV로부터 영상을 입력받아 Adaptive GMM알고리즘을 이용하여 이동 객체를 추출한다. 다음, 이동 객체 가 사람인지 소인지 또는 차량인지 분류하기 위해 이동 객체의 특징을 추출한다. 이동 객체 특징 추출 방법으로는 기존의 Monolithic-based방법인 HoG알고리즘을 개선하여 축사의 복잡한 환경에서 다양한 자세를 가지는 사람과 소 그리고 차량의 구조적 특징을 추출한다. 추출한 특징은 벡터화 하여 SVM분류기 입력값에 적합하도록 한다. SVM 분류를 통해 이동 객체의 구조적 특징을 블록화 하여 이동 객체의 신체 모델을 생성한다. 마지막으로 생성된 신체 모델을 이용하여 이동 객체가 사람인지 소인지 또는 차량인지 분류한다.

  • PDF

Representative Feature Extraction of Objects Using VQ and Its Application To Content-Based Image Retrieval (VQ를 이용한 영상의 객체 특징 추출과 이를 이용한 내용기반 영상 검색)

  • 정세환;유헌우;장동식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.359-361
    • /
    • 1999
  • 내용 기반 영상 검색을 위해 본 연구에서는 Vector Quantization을 이용하여 영상을 구성하는 주요 객체들의 특징 추출 방법을 제안한다. 내용 기반 검색 시스템에서 사용되는 영상의 주요 특징들은 색상, 질감, 형태 및 영상을 구성하고 있는 객체들의 공간적 위치 등이 사용된다. 이러한 특징들 중에서 어떤 특징들을 사용하고 또 어떤 방식으로 결합하느냐에 따라 혹은 영상의 특성을 잘 나타낼 수 있는 주요 특징을 어떻게 추출, 표현하느냐에 따라 검색 성능에 큰 영향을 미친다. 이 중 본 논문에서는 일반적인 색상, 질감 특징 추출방법과 더불어 Vector Quantization 알고리즘을 이용하여 정지 영상을 구성하고 있는 객체들의 대표 색상과 질감 특징을 빠르게 추출하고 이를 내용 기반 검색에 이용함으로써 객체의 위치, 회전 및 크기 변화에 무관한 검색을 가능케 했다. 연구의 실험 결과 VQ를 이용함으로써 대표특징치 추출시간을 줄일 수 있었고 검색시 색상과 질감 특징의 가중치를 각각 0.5, 0.5로 주는 것이 가장 높은 검출율을 보였으며 제안된 방식에 의해 '사람' 영상의 경우 0.9의 검출율을 보였다.

  • PDF

Implementation of Image-Retrieval System Using Automatic Object Region Extraction and Property of GLCM-based Texture (자동 객체 영역 추출과 GLCM 기반 Texture특징을 이용한 영상 검색 시스템 구현)

  • Kim, Seong-Bin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.255-257
    • /
    • 2008
  • 본 논문에서는 최근 IT 기술의 발전에 따라 무수히 양산되고 있는 멀티미디어 데이터를 효율적으로 검색하기 위한 방법을 제안한다. 영상 검색 시스템에 사용되는 데이터베이스(DB) 영상들에 존재하는 각 객체들의 존재 영역을 기반으로 질의 영상 (query image)의 객체 영역을 추정해서 검색에 활용하는 것이다. 이는 질의 영상의 전체 영역으로부터 객체를 추정하는 것보다 데이터베이스 영상들로부터 추출한 통계적 객체 분포 범위를 기반으로 추정하기 때문에 빨리 객체 추출이 가능하도록 한다. 따라서 객체를 추출하기 위한 배경 지식이나, 사용자 입력이 전혀 필요 없다. 이렇게 추출된 객체 영역의 영상들로부터 GLCM 알고리즘을 이용해서 객체 영역의 특성이 잘 반영된 질감 특징 값을 바탕으로 검색에 활용 할 경우 원본 영상의 질감 특징을 활용한 경우보다, 객체의 질감 특징을 더 잘 반영한다는 것을 실험을 통해 확인할 수 있었다.

  • PDF

A Scheme for Progressive Service of Retrieved Images based on Object Extraction and Grouping (객체 추출 및 객체별 그룹핑을 이용한 영상검색 결과의 단계적 서비스 방안)

  • 박창민;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.180-185
    • /
    • 2002
  • 본 논문에서는 키워드를 입력해 검색된 영상들을 유사한 특징을 갖는 소수의 그룹으로 그룹핑하고 각 그룹을 대표하는 대표영상을 추출하여 우선적으로 사용자에게 보여주고 필요에 따라 나머지 영상들을 단계적으로 서비스할 수 있는 방안을 제시한다. 영상 그룹핑을 위한 각 영상의 특징은 영상에 포함된 중심 객체를 사용하여 추출한다. 이를 위해 검색 키워드는 객체와 연관성이 있는 단어로 제한하여 영상을 검색하며 검색된 영상으로부터 중심 객체를 추출할 수 있는 객체 추출 방법을 활용하였다. 각 영상으로부터 추출된 중심 객체에 대한 특징 벡터는 칼라 분포를 이용한다. 영상 그룹핑은 칼라분포로 표현되는 특징공간에서의 밀집도를 조사하여 높은 밀도로 모여있는 영역별로 추출하여 동일한 그룹으로 분류하였다. 대표 영상은 분류된 그룹에서 가장 밀집도가 높은 영상으로 선택된다. 한편, 얼굴이 포함된 영상은 사전에 따로 분류하고 얼굴 크기 및 얼굴 수에 따라 영상을 그룹핑하여 각 그룹에 대한 대표 영상을 선정한다. 본 연구에서 제안한 방법은 사용자에게 모든 검색 결과를 일괄적으로 보여주는 것에 비해 보다 빠른 시간 내에 사용자가 원하는 영상을 편리하면서도 효과적으로 확인할 수 있는 방법을 제공해 줄 수 있을 것으로 기대한다.

  • PDF

Rotated object recognition based on corner feature points in mobile environment (모바일 환경 응용을 위한 코너 특징점 기반의 회전 객체 검출)

  • Kim, Dae-Hwan;Piao, Jin-Chun;Kim, Shin-Dug
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.23-26
    • /
    • 2013
  • 최근 모바일 장치의 영상 데이터 처리 능력 확대와 더불어 사용자가 요구하는 다양한 영상 데이터의 효율적인 인식 기술 연구가 요구되어지고 있다. 모바일 환경은 고성능 PC 환경과 달리 저사양의 CPU와 메모리를 탑재하고 있어, 영상에서 원하는 객체를 인식하기 위한 기존의 방법론으로는 사용자 요구를 실시간으로 충족하기 어려운 부분이 존재한다. 이에 모바일 환경에 맞는 객체 인식 방법론의 개발이 요구된다. 모바일 환경에서 실시간으로 객체 인식을 하기 위하여, 본 논문에서는 객체 코너 정보를 이용한 Harris corner detector[1]로부터 객체의 특징점을 추출하고, 이를 바탕으로 하여 영상내의 객체 정보 인식 방법을 제안한다. 제안하는 방법에 의해, 입력 영상에서 객체의 코너 정보를 빠르게 추출, 기존 특징점과의 비교를 통하여 영상 내부의 객체 인식을 진행한다. 일반적으로, 회전된 특징점 객체의 정보는 객체의 회전 정도에 따라 코너 픽셀 색상 정보의 변화가 발생하게 된다. 특징점의 색상값은 객체의 회전 정도에 영향을 받아 주변의 픽셀값과 혼합되는 특성이 존재한다. 본 논문에서는 회전 변경된 픽셀 색상값의 영향을 분석하여, 회전된 객체의 특징점 추출 및 객체 검출에 반영하도록 하여, 영상 내부의 회전된 객체 검출의 수행에 효과적으로 이용될 수 있도록 한다. 특징점의 코너 정보를 이용하여 객체를 인식하는 것은, 객체의 인식률은 다소 감소하더라도 모바일 환경에서 계산량의 감소를 통한 실시간 활용이 가능하도록 한다. 이러한 특성은 저성능 CPU와 메모리에서도 회전된 객체의 인식을 수행할 수 있게 하는데 상당히 효과적이다.

  • PDF

Using a realistic experiential content extraction system designed for the object's rotation (현실감 있는 체감형 콘텐츠 사용을 위한 객체의 회전각 추출 시스템 설계)

  • Kang, maeng-kwan;Kim, ki-hyun;Park, hyun-woo;Yun, tae-soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.303-304
    • /
    • 2012
  • 본 논문에서는 사용자가 보다 현실감 있는 체감형 콘텐츠 사용을 위해 빠르게 움직이는 객체의 운동 요소 추출에 있어서 객체의 움직이는 방향과 거리, 각도 등 중요한 요소인 회전각을 추출하는 방법을 제안한다. 빠르게 회전을 하는 객체에 특징점 생성을 위하여 마커 제작을 제안하고 접목하며 패턴 인식을 통하여 마커의 특징점을 추출하도록 한다. 추출된 특징점은 제안하는 POSIT 알고리즘을 통하여 특징점을 분석하여 회전하는 객체의 회전각을 추출 할 수 있도록 하였다. 본 시스템은 향후 보다 다양한 콘텐츠에 접목함으로 인하여 체감형 콘텐츠를 사용함에 있어서 객체의 회전각을 추출할 수 있는 인식 디바이스로써 활용이 가능하다.

  • PDF

RGB-D Image Feature Point Extraction and Description Method for 3D Object Recognition (3차원 객체 인식을 위한 RGB-D 영상 특징점 추출 및 특징 기술자 생성 방법)

  • Park, Noh-Young;Jang, Young-Kyoon;Woo, Woon-Tack
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.448-450
    • /
    • 2012
  • 본 논문에서는 Kinect 방식의 RGB-D 영상센서를 사용하여, 깊이(Depth) 영상으로부터 3차원 객체의 기하정보를 표현하는 표면 정규 벡터(Surface Normal Vector)를 추출하고, 그 결과를 영상화하는 방법을 제안하며, 제안된 방법으로 생성된 영상으로부터 깊이 영상의 특징점 및 특징 기술자를 추출하여 3차원 객체 인식 성능을 향상시키는 방법을 제안한다. 또한 생성된 RGB-D 특징 기술자들을 객체 단위로 구분 가능한 코드북(CodeBook) 학습을 통한 인식방법을 제안하여 객체의 인식 성능을 높이는 방법을 제안한다. 제안하는 RGB-D 기반의 특징 추출 및 학습 방법은 텍스쳐 유무, 카메라 회전 및 이동 변화 등의 환경변화에 강건함을 실험적으로 증명하였으며, 이 방법은 Kinect 방식의 RGB-D 영상을 사용하는 3차원 객체/공간 인식 및 추적, 혹은 이를 응용하는 증강현실 시스템에 적용하여 사용될 수 있다.

Korean Caption Extraction with Decision Tree (의사결정 트리를 이용한 한글 자막 추출)

  • Jung, Je-Hee;Lee, Seun-Hoon;Kim, Jae-Kwang;Lee, Jee-Hyong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.527-532
    • /
    • 2008
  • 자막은 영상과 관련이 있는 정보를 포함한다. 이러한 영상의 정보를 이용하기 위해서 자막을 추출하는 연구가 진행되고 있다. 기존의 자막 추출 연구는 언어 독립적인 특징으로 자막을 이루는 획의 에지는 일정한 간격을 유지하거나 수평라인으로 존재하는 글자의 분포를 이용한 방법을 제안하였다. 이러한 방법들은 획의 간격이 일정한 자막이나 하나의 글자가 하나의 획으로 이루어진 글자에서만 정상적인 동작을 보장하였다. 본 논문에서는 한글 자막 특징을 고려한 자막 추출 방법을 제안한다. 먼저, 한글 자막의 특징인 가로 획의 다수 분포를 고려한 적응형 에지 이진화를 수행하여 에지 영상을 생성하고 에지 연결 객체를 생성한다. 그 후에 생성한 연결 객체를 특징을 추출하여 사전에 생성한 의사결정 트리로 연결 객체를 자막과 비자막 연결객체로 분류한다. 의사결정 트리를 생성하기 위해서 사용한 연결 객체는 뉴스, 다큐멘터리 프로그램에서 획득하였으며, 성능 평가를 위해서 뉴스, 다큐멘터리, 스포츠 프로그램과 같은 대중 방송에서 획득한 영상에서 자막을 추출하였다. 평가 방법은 찾아진 연결 객체 중에 자막 연결 객체의 비율과 전체 자막 중에서 찾아진 자막 연결 객체의 비율로 분석하였다. 실험 결과에서는 제안한 방법이 한글 자막의 추출에 적용 가능함을 보여준다.

  • PDF