본 논문에서는 영상에 포함된 중심 객체를 추출하는 방법에 대해 제시한다. 중심 객체는 촬영의 중심이 되어 영상의 중앙 부분에 비교적 큰 면적을 차지하는 객체로 정의하는데 영상 내용에 대한 중요한 정보를 제공한다. 중심 객체 추출을 위해 우선 입력 영상에 대해 해상도를 줄여가며 영상 분할하고 분할된 결과에 대해 계층적 영역 병합을 수행함으로써 객체가 많은 수의 영역으로 세분화되어 영상 분할되는 것을 방지할 수 있도록 하였다. 분할된 각 영역은 영상의 경계와 접하는 경계 영역과 그 외의 비경계 영역으로 분류하였다. 비경계 영역은 중심 객체에 해당될 가능성이 있는 영역으로써, 이들 중에서 영상 중심 부근에서 가장 큰 크기를 차지하는 영역이 핵심객체영역으로 선택된다. 또한 경계 영역 중에서 영상의 네 모서리에 인접하는 영역은 핵심배경영역으로 선택되어 핵심객체영역과 함께 중심 객체 추출에 이용된다. 각 비경계 영역은 핵심 배경영역및 핵심객체영역과 칼라 분포 유사도출 비교하여 배경영역과 전경영역으로 분류된다. 핵심객체영역 및 핵심객체영역과 연결성을 가지는 전경영역이 최종 중심 객체로 선택된다. 본 논문에서 제안된 방법은 비교적 복잡한 배경을 갖는 영상에 대해서도 어느 정도 만족할 만한 결과를 얻을 수 있었다.
본 논문은 연속적인 비디오 시퀀스에서 움직이는 객체의 영역을 효율적으로 분할하기 위하여 커널 기반 객체 추적과 Grab-Cut 알고리즘을 결합한 비디오 영역 분할 방법을 제안한다. 제안 방법에서는 추적 목표 객체의 초기 위치를 사각영역으로 선택하면, 사각의 외부 영역을 배경색상으로 인지하고, 배경 색상을 고려한 목표 객체의 주요 색상을 분석한다. 이를 기반으로 커널기반 객체 추적 기법을 적용하여 빠르게 객체의 영역을 추출한다. 추적한 각 객체의 영역에서 중앙 객체 영역과 배경 영역의 색 정보를 초기값으로 하여 Grab-Cut 알고리즘을 수행하고 사각형 형태가 아닌 객체의 실루엣 최적화된 영역으로 분할한다. 제안 방법을 스포츠 방송, 광고, 영화 등의 특수 효과로 활용되고 있는 stromotion 영상 생성에 적용하기 위하여 프레임별 추출된 객체의 영상을 새로운 프레임 영상에 합성하는 작업을 수행하여, 초당 10 프레임의 처리 속도에서 원하는 스트로모션 효과 영상을 생성하였다.
본 논문에서는 칼라영상에 포함된 객체를 추출할 수 있는 방법을 제시한다. 객체는 상이한 칼라와 텍스처로 구성되는데 이들을 포괄하여 사람이 인식하는 객체와 유사한 형태로 추출할 수 있도록 하였다. 이를 위해 해상도를 줄여가며 영역 분할한 후 그 결과를 조합함으로써 사소한 변화는 흡수하고 중요한 변화가 발생하는 영역 단위의 분할이 가능하도록 하였다. 분할된 영역들의 공간적 정보와 영역 크기 정보를 이용하여 분할된 영역 중에서 핵심 객체영역과 핵심 배경영역을 선택하고 객체 후보 영역에 대해 이들과 칼라 분포 유사도 조사를 하여 핵심객체영역과 유사한 유사도를 갖는 영역들을 최종 객체 영역으로 추출하였다. 본 논문에서 제안된 방법은 다양한 실험을 통해 단순한 배경을 가진 영상뿐만 아니라 복잡한 배경을 갖는 영상에 대해서도 어느 정도 만족할 만한 결과를 얻을 수 있음을 확인하였다. 본 논문에서 제안된 방법은 내용기반검색, 영상 DB의 인덱싱 등 다양한 분야에 활용될 수 있을 것으로 예상된다.
본 논문에서는 절차 중심 소프트웨어를 객체 지향 소프트웨어로 재/역공학기 위한 다단계 절차 중 객체 추출 단계에서 선 클러스터링을 통해 불필요한 정제 결합단계를 축소하고, 영역 전문가의 선택으로 영역모델링에 가장 가까운 객체 후보군을 제시하는 알고리즘을 제안하고자 한다. 기존의 연구에서는 영역 모델링과 다중 객체 후보군과의 유사도를 측정하여 영역 전문가에게 최적합 후보를 선택할 수 있는 측정 결과를 제시하였다. 하지만 영역 전문가가 제시하는 영역 모델링이 존재한다면 정제 결합단계이전에 최대한의 선 클러스터링을 통해서 영역 모델링과 가장 유사한 통합 객체를 제시할 수 있고, 정제 결합 단계를 선 클러스터링을 통해서 축소할 수 있으며 이를 통해서 객체 후보군과 영역모델링의 유사도를 향상 시키며 클러스터링에 따른 시간과 공간을 절약할 수 있다. 따라서 본 논문에서는 영역 모델링과 사용자의 함수, 전역변수의 선택을 통해 영역 모델링에 가장 유사한 객체 후보군을 찾는 선 클러스터링 알고리즘 제안 하고자 한다.
본 논문은 비디오 시퀀스에 카메라 패닝 보상과 2차원 시공간 엔트로피 임계법을 적용하여 추출한 객체포함영역을 대상으로 영상 분할을 수행하는 이동 객체 분할 기법에 관한 것이다. 우선, 웨이블렛 변환에 의해 구성한 피라미드 계층 구조상에서 카메라 패닝 벡터를 추정하여 전역 움직임을 보상한다. 이후, 전역 움직임이 보상된 기준영상을 대상으로 각 프레임간에서 2차원 시공간 엔트로피 임계법을 적용하여 이동 객체가 포함될 가능성이 있는 영역을 블록 단위로 추출한다. 다음으로, 2차원 시공간 엔트로피 입계법에 의해 분류된 영역을 토대로 각 블록을 움직임블록, 준 움직임 블록, 비 움직임 블록 중 어느 하나로 분류한 검색 테이블을 작성한다. 이어서, 검색 테이블을 참조하여 초기 탐색 계층 및 탐색 영역을 적응적으로 선정함으로써 피라미드 계층 구조상에서 효율적인 고속 움직임 추정을 수행하여 이동 객체에 해당하는 객체포함영역만을 추출한다. 최종적으로, 이렇게 추출된 객체포함영역에서 임계 기울기 영상을 정의한 후, 이를 기준 삼아 객체포함영역에 화소 단위의 형태학 기반 영상 분할 알고리즘을 적용함으로써 비디오 시퀀스에 포함된 이동 객체를 분할한다. 컴퓨터 시뮬레이션 결과를 통해 고찰할 때, 제안된 방법은 이동 객체에 대한 상대적으로 우수한 분할 특성을 제공할 수 있고, 특히 저대조 경계면의 분할 특성을 제고시키고 있음을 확인할 수 있다.
본 논문에서는 특이 칼라 분포에 대한 정보를 활용함으로써 어떠한 사전 지식없이 칼라 영상으로부터 중심 객체를 추출하는 방법에 대해 제안한다. 중심 객체는 영상 중심 부근에 위치하면서 특이 칼라 분포를 갖는 영역들의 집합으로 정의한다. 특이 칼라는 영상 경계 주변에 비해 영상의 중심 위치에서 보다 높은 밀도로 존재하는 칼라로 정의한다. 중심 객체 추출을 위해 우선 특이 칼라 정보를 사용하여 영상 분할된 영역 중에서 객체의 특징을 대표하는 영역들의 집합을 핵심객체영역을 선택한다. 핵심객체영역에 인접하며 이와 높은 칼라 유사도를 갖고 또한 배경이 아닌 영역들을 반복적으로 핵심객체영역에 병합하여 핵심객체영역을 확장함으로써 생성된 최종 병합 결과를 중심 객체로 추출한다. 따라서 중심 객체는 상이한 칼라 특징을 갖는 영역으로 구성될 수 있으며 상호 연결되어 있을 경우에는 두개 이상의 객체가 중심 객체에 포함될 수 있다. 제안된 방법의 타당성 및 중요 칼라의 유용성은 다양한 실험 영상을 통해 확인하였다. 본 논문에서 제안된 방법으로 추출된 중심 객체는 영상 검색 응용 분야에 유용하게 사용될 수 있을 것으로 기대한다.
본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다 영상 분류를 위해 객체의 특징에 기반하여 세 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 마지막 기준은 객체의 핵심 영역 경계에서의 경계 강도이다. 영상을 분류하기 위해서 신경 회로망 학습을 통해서 세 가지 기준들을 통합하도록 한다. 900개의 영상들에 대해 실헝한 결과 84.2%의 분류 정확도를 얻었다.
일반적으로 영상내의 중요한 정보는 객체 영역에 많이 포함되어 있다. 객체 영역 우선 전송 방법은 영상의 전 영역에 대해 동일한 중요도로 전송하는 일반적인 점진적 부호화 방법과는 달리 객체 영역만을 우선적으로 부호화 하여 전송하기 때문에 짧은 시간 내에 원 영상을 보다 빨리 파악할 수 있다. 따라서 본 논문에서는 양방향 반올림 필터를 이용한 MRWD기반 객체 영역 우선 전송 기법을 제안한다. 제안한 방법은 양방향 반올림 필터에 의해 객체 영역을 추출한 후, MRWD를 이용하여 부호화를 수행하므로, 객체 영역의 웨이브릿 계수들을 우선 전송함으로써 매우 낮은 비트율에서 영상내의 중요 정보를 파악할 수 있다. 따라서, 인터넷상에서 사용자가 영상을 검색할 경우 보다 빨리 원하는 정보를 파악할 수 있어 검색 시간과 검색 효율을 개선시킬 수 있다.
본 논문에서는 최근 IT 기술의 발전에 따라 무수히 양산되고 있는 멀티미디어 데이터를 효율적으로 검색하기 위한 방법을 제안한다. 영상 검색 시스템에 사용되는 데이터베이스(DB) 영상들에 존재하는 각 객체들의 존재 영역을 기반으로 질의 영상 (query image)의 객체 영역을 추정해서 검색에 활용하는 것이다. 이는 질의 영상의 전체 영역으로부터 객체를 추정하는 것보다 데이터베이스 영상들로부터 추출한 통계적 객체 분포 범위를 기반으로 추정하기 때문에 빨리 객체 추출이 가능하도록 한다. 따라서 객체를 추출하기 위한 배경 지식이나, 사용자 입력이 전혀 필요 없다. 이렇게 추출된 객체 영역의 영상들로부터 GLCM 알고리즘을 이용해서 객체 영역의 특성이 잘 반영된 질감 특징 값을 바탕으로 검색에 활용 할 경우 원본 영상의 질감 특징을 활용한 경우보다, 객체의 질감 특징을 더 잘 반영한다는 것을 실험을 통해 확인할 수 있었다.
본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다. 아울러 제안방법의 성능에 대한 실험결과를 기존 추적알고리즘과 비교, 분석하여 평가한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.