진화 전략은 생식, 돌연변이, 재조합과 같은 생물의 진화과정을 모델링하여 복잡한 문제를 해결하고자 하는 개체군 기반의 조합 최적화 알고리즘 중의 하나이다. 데이터 집약적이며, 소요 시간이 오래 걸리는 진화 전략은 클라우드 컴퓨팅 하의 IT 서비스로서 적합한 대표적인 예이다. 이에 본 논문에서는 최근 분산 환경 하에서 병렬 처리 응용을 쉽게 개발할 수 있도록 지원하는 프로그래밍 모델인 MapReduce 를 확장하여 진화 전략을 수행할 수 있는 방법을 제안한다.
양돈을 관리하는 데에 있어 비정상 개체를 식별하고 사전에 추적하거나 격리할 수 있는 양돈업 시스템을 구축하는 것은 효율적인 돈사관리를 위한 필수 요소이다. 그러나 돈사내의 이상 상황을 탐지하는 연구는 보고되었지만, 이상 상황이 발생한 돼지를 특정하여 식별하는 연구는 찾아보기 힘들다. 따라서, 본 연구에서는 소리를 활용하여 이상 상황이 발생함을 탐지한 후 영상을 활용하여 소리를 낸 특정 돼지를 식별할 수 있는 시스템을 제안한다. 해당 시스템의 주요 알고리즘은 활성 화자 탐지 문제에서 착안하여 이를 돈사에 맞게 적용하여, 비정상 소리를 내는 활성 돼지를 식별 가능하도록 구현하였다. 제안한 방법론은 모의 실험을 통해 돈사 내의 이상 상황이 발생한 돼지를 식별할 수 있음을 확인하였다.
Kim, Ho-Yeon;Park, Min-Woo;Seo, Sangwook;Chung, Tai-Myoung
Annual Conference of KIPS
/
2011.11a
/
pp.872-875
/
2011
악성코드 개체 수의 급격한 증가와 정형화되지 않은 악성코드 분류 기준 때문에 업체별, 연구기관별 악성코드 분류 방식이 서로 상이하다. 이 때문에 악성코드를 분석하는 분석가들은 모호한 악성코드 분류 방식 때문에 업무에 불필요한 시간이 소요되고 있다. 또한 안티 바이러스 제품을 사용하는 최종 사용자로 하여금 혼란을 유발하고, 악성코드에 대응하기 위해 진행되는 연구에서 악성코드에 대한 정확한 분류 지표가 없어, 연구에 혼선을 빚고 있다. 본 논문에서는 악성코드의 정확한 분류와 새로운 악성코드가 발견되고, 새로운 매체가 출현하여도 이에 유기적으로 대응할 수 있도록 악성코드의 목적행위에 따라서 총 7개 그룹으로 나누었다. 제안 분류 방식을 사용할 경우 분류된 악성코드에 대하여 보다 정확한 정보를 얻을 수 있을 것으로 기대한다.
군사 분야에서 사용하는 기존 영상융합체계는 영상에서 미확인 개체를 식별하는 Activity-Based Intelligence(ABI) 기술과 객체들에 대한 지식정보를 관리하는 Structured Observation Management(SOM) 기술을 연동하여 다양한 관점에서 분석하고 있다. 그러나 군사적인 목적을 달성하기 위해서는 미래 정보가 중요하기 때문에 주변 맥락 정보를 통합하여 분석해야 할 필요성이 있으며 이를 위해 주변맥락 정보를 분석하는 딥러닝 모델 적용이 필요하다. 본 논문에서는 딥러닝 모델 기반 영상 판독 시스템 구축을 하기 위한 전처리 과정을 설계하였다. pyhwp 라이브러리를 이용하여 영상 정보 판독 데이터를 파싱 및 전처리를 진행하여 데이터 구축을 진행하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.151-153
/
2021
포인트 클라우드는 특정 개체 혹은 장면을 다수의 3 차원 포인터를 사용하여 표현하는 데이터의 표현 방식 중 하나로 3D 데이터를 정밀하게 수집하고 표현할 수 있는 방법이다. 하지만 방대한 양의 데이터를 필요로 하기 때문에 효율적인 압축이 필수적이다. 이에 따라 국제 표준화 단체인 Moving Picture Experts Group 에서는 포인트 클라우드 데이터의 효율적인 압축 방법 중 하나로 Video based Point Cloud Compression(V-PCC)에 대한 표준을 제정하였다. V-PCC 는 포인트 클라우드 정보를 Occupancy, Geometry, Texture 와 같은 다수의 2D 영상으로 변환하고 각 2D 영상을 전통적인 2D 비디오 코덱을 활용하여 압축하는 방법이다. 본 논문에서는 V-PCC 에서 변환하는 Occupancy 의 정보를 활용하여 효율적으로 Texture 영상을 압축할 수 있은 방법을 소개한다. 또한 제안방법이 V-PCC 에서 약 1%의 부호화 효율을 얻을 수 있음을 보인다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.103-108
/
2019
한국어 질의 응답의 입력 질문에 대한 예상 정답 유형을 단답형 또는 서술형으로 이진 분류하는 방법에 대해 서술한다. 일반적인 개체명 인식으로 확인할 수 없는 질의 주제어의 화제성을 반영하기 위하여, 검색 엔진 쿼리를 빈도수로 분석한다. 분석된 질의 주제어 정보와 함께, 정답의 범위를 제약할 수 있는 속성 표현과 육하원칙 정보를 입력 자질로 사용한다. 기존 신경망 분류 모델과 비교한 실험에서, 추가 자질을 적용한 모델이 4% 정도 향상된 분류 성능을 보이는 것을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.172-175
/
2020
최근 자연어처리는 대용량 코퍼스를 이용하여 언어 모델을 사전 학습하고 fine-tuning을 적용함으로 다양한 태스크에서 최고 성능을 갱신하고 있다. BERT기반의 언어 모델들은 양방향의 Transformer만 모델링 되어 있지만 BART는 양방향의 Transformer와 Auto-Regressive Transformer가 결합되어 사전학습을 진행하는 모델로 본 논문에서는 540MB의 코퍼스를 이용해 한국어 BART 모델을 학습 시키고 여러 한국어 자연어처리 태스크에 적용하여 성능 향상 있음을 보였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.588-591
/
2021
다중추론 질의응답 태스크는 하나의 문서만 필요한 기존의 단일추론 질의응답(Single-hop QA)을 넘어서 복잡한 추론을 요구하는 질문에 응답하는 것이 목표이다. IRQA에서는 검색 모델의 역할이 중요한 반면, 주목받고 있는 Dense Retrieval 모델 기반의 다중추론 질의응답 검색 모델은 찾기 어렵다. 본 논문에서는 검색분야에서 좋은 성능 보이고 있는 Dense Retrieval 모델의 다중추론을 위한 사전학습 방법을 제안하고 관련 한국어 데이터 셋에서 이전 방법과의 성능을 비교 측정하여 학습 방법의 유효성을 검증하고 있다. 이를 통해 지식 베이스, 엔터티 링킹, 개체명 인식모듈을 비롯한 다른 서브모듈을 사용하지 않고도 다중추론 Dense Retrieval 모델을 학습시킬 수 있음을 보였다.
안정적인 서버 운영을 위해 이상 패턴 및 개체를 식별하는 이상탐지 연구가 활발하게 연구되어 오고 있다. 이상탐지의 대표적인 예로 서버의 사용량 증가를 꼽을 수 있지만, 실제 이상 데이터 수집 및 현상의 재현이 어렵다는 점은 해당 연구의 어려움으로 존재한다. 본 연구는 다양한 시나리오 기반의 부하테스트를 설계하고, 클라우드 환경에서 이상 데이터를 생성 및 수집하였다. 해당 데이터는 이상탐지에 대표적으로 사용되는 알고리즘의 성능을 비교 분석에 활용하였으며, 실험을 통해 각 알고리즘의 신뢰 수준을 확인하였다. 이는 다양한 서버 운영 환경에 적합한 알고리즘을 채택하는데 활용 가능하며, 결과적으로 안정적이고 효율적인 서버 운영에 기여할 수 있을 것으로 사료된다.
In this paper we describe an approach for template based detection and tracking of objects by chamfer matching in real time video. Detecting and tracking of any objects is the key problem in computer vision. In our case we try for hand and head of human for detection and tracking by chamfer matching technique. Matching involves correlating the templates with the distance transformed scene and determining the locations where the mismatch is below a certain user defined threshold.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.