• Title/Summary/Keyword: 개체 기반

Search Result 923, Processing Time 0.03 seconds

Parallel Evolution Strategy Using an Extended MapReduce (확장된 MapReduce를 이용한 병렬 진화 전략)

  • Choi, Hyun Hwa;Lee, Mi Young;Lee, Kyu Chul
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.97-98
    • /
    • 2009
  • 진화 전략은 생식, 돌연변이, 재조합과 같은 생물의 진화과정을 모델링하여 복잡한 문제를 해결하고자 하는 개체군 기반의 조합 최적화 알고리즘 중의 하나이다. 데이터 집약적이며, 소요 시간이 오래 걸리는 진화 전략은 클라우드 컴퓨팅 하의 IT 서비스로서 적합한 대표적인 예이다. 이에 본 논문에서는 최근 분산 환경 하에서 병렬 처리 응용을 쉽게 개발할 수 있도록 지원하는 프로그래밍 모델인 MapReduce 를 확장하여 진화 전략을 수행할 수 있는 방법을 제안한다.

Abnormal Active Pig Detection System using Audio-visual Multimodal Information (Audio-visual 멀티모달 정보 기반의 비정상 활성 돼지 탐지 시스템)

  • Chae, Heechan;Lee, Junhee;Lee, Jonguk;Chung, Yonghwa;Park, Daihee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.661-664
    • /
    • 2022
  • 양돈을 관리하는 데에 있어 비정상 개체를 식별하고 사전에 추적하거나 격리할 수 있는 양돈업 시스템을 구축하는 것은 효율적인 돈사관리를 위한 필수 요소이다. 그러나 돈사내의 이상 상황을 탐지하는 연구는 보고되었지만, 이상 상황이 발생한 돼지를 특정하여 식별하는 연구는 찾아보기 힘들다. 따라서, 본 연구에서는 소리를 활용하여 이상 상황이 발생함을 탐지한 후 영상을 활용하여 소리를 낸 특정 돼지를 식별할 수 있는 시스템을 제안한다. 해당 시스템의 주요 알고리즘은 활성 화자 탐지 문제에서 착안하여 이를 돈사에 맞게 적용하여, 비정상 소리를 내는 활성 돼지를 식별 가능하도록 구현하였다. 제안한 방법론은 모의 실험을 통해 돈사 내의 이상 상황이 발생한 돼지를 식별할 수 있음을 확인하였다.

A Study on Classification of Malware Based on Purpose of Behavioral (목적행위를 기반으로 한 악성코드 분류 방식에 관한 연구)

  • Kim, Ho-Yeon;Park, Min-Woo;Seo, Sangwook;Chung, Tai-Myoung
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.872-875
    • /
    • 2011
  • 악성코드 개체 수의 급격한 증가와 정형화되지 않은 악성코드 분류 기준 때문에 업체별, 연구기관별 악성코드 분류 방식이 서로 상이하다. 이 때문에 악성코드를 분석하는 분석가들은 모호한 악성코드 분류 방식 때문에 업무에 불필요한 시간이 소요되고 있다. 또한 안티 바이러스 제품을 사용하는 최종 사용자로 하여금 혼란을 유발하고, 악성코드에 대응하기 위해 진행되는 연구에서 악성코드에 대한 정확한 분류 지표가 없어, 연구에 혼선을 빚고 있다. 본 논문에서는 악성코드의 정확한 분류와 새로운 악성코드가 발견되고, 새로운 매체가 출현하여도 이에 유기적으로 대응할 수 있도록 악성코드의 목적행위에 따라서 총 7개 그룹으로 나누었다. 제안 분류 방식을 사용할 경우 분류된 악성코드에 대하여 보다 정확한 정보를 얻을 수 있을 것으로 기대한다.

Pre-processing and implementation for intelligent imagery interpretation system (지능형 영상 판독 시스템 설계를 위한 전처리 및 구현)

  • Jeon, TaeHyeon;Na, HyungSun;Ahn, Jinhyun;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.305-307
    • /
    • 2021
  • 군사 분야에서 사용하는 기존 영상융합체계는 영상에서 미확인 개체를 식별하는 Activity-Based Intelligence(ABI) 기술과 객체들에 대한 지식정보를 관리하는 Structured Observation Management(SOM) 기술을 연동하여 다양한 관점에서 분석하고 있다. 그러나 군사적인 목적을 달성하기 위해서는 미래 정보가 중요하기 때문에 주변 맥락 정보를 통합하여 분석해야 할 필요성이 있으며 이를 위해 주변맥락 정보를 분석하는 딥러닝 모델 적용이 필요하다. 본 논문에서는 딥러닝 모델 기반 영상 판독 시스템 구축을 하기 위한 전처리 과정을 설계하였다. pyhwp 라이브러리를 이용하여 영상 정보 판독 데이터를 파싱 및 전처리를 진행하여 데이터 구축을 진행하였다.

Texture video coding based on Occupancy information in V-PCC (V-PCC 를 위한 Occupancy 정보 기반의 Texture 영상 부호화 방법)

  • Gwon, Daehyeok;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.151-153
    • /
    • 2021
  • 포인트 클라우드는 특정 개체 혹은 장면을 다수의 3 차원 포인터를 사용하여 표현하는 데이터의 표현 방식 중 하나로 3D 데이터를 정밀하게 수집하고 표현할 수 있는 방법이다. 하지만 방대한 양의 데이터를 필요로 하기 때문에 효율적인 압축이 필수적이다. 이에 따라 국제 표준화 단체인 Moving Picture Experts Group 에서는 포인트 클라우드 데이터의 효율적인 압축 방법 중 하나로 Video based Point Cloud Compression(V-PCC)에 대한 표준을 제정하였다. V-PCC 는 포인트 클라우드 정보를 Occupancy, Geometry, Texture 와 같은 다수의 2D 영상으로 변환하고 각 2D 영상을 전통적인 2D 비디오 코덱을 활용하여 압축하는 방법이다. 본 논문에서는 V-PCC 에서 변환하는 Occupancy 의 정보를 활용하여 효율적으로 Texture 영상을 압축할 수 있은 방법을 소개한다. 또한 제안방법이 V-PCC 에서 약 1%의 부호화 효율을 얻을 수 있음을 보인다.

  • PDF

Deep learning-based Answer Type Classifier Considering Topicality in Korean Question Answering (한국어 질의 응답에서의 화제성을 고려한 딥러닝 기반 정답 유형 분류기)

  • Cho, Seung Woo;Choi, DongHyun;Kim, EungGyun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.103-108
    • /
    • 2019
  • 한국어 질의 응답의 입력 질문에 대한 예상 정답 유형을 단답형 또는 서술형으로 이진 분류하는 방법에 대해 서술한다. 일반적인 개체명 인식으로 확인할 수 없는 질의 주제어의 화제성을 반영하기 위하여, 검색 엔진 쿼리를 빈도수로 분석한다. 분석된 질의 주제어 정보와 함께, 정답의 범위를 제약할 수 있는 속성 표현과 육하원칙 정보를 입력 자질로 사용한다. 기존 신경망 분류 모델과 비교한 실험에서, 추가 자질을 적용한 모델이 4% 정도 향상된 분류 성능을 보이는 것을 확인할 수 있었다.

  • PDF

BART for Korean Natural Language Processing: Named Entity Recognition, Sentiment Analysis, Semantic role labelling (BART를 이용한 한국어 자연어처리: 개체명 인식, 감성분석, 의미역 결정)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.172-175
    • /
    • 2020
  • 최근 자연어처리는 대용량 코퍼스를 이용하여 언어 모델을 사전 학습하고 fine-tuning을 적용함으로 다양한 태스크에서 최고 성능을 갱신하고 있다. BERT기반의 언어 모델들은 양방향의 Transformer만 모델링 되어 있지만 BART는 양방향의 Transformer와 Auto-Regressive Transformer가 결합되어 사전학습을 진행하는 모델로 본 논문에서는 540MB의 코퍼스를 이용해 한국어 BART 모델을 학습 시키고 여러 한국어 자연어처리 태스크에 적용하여 성능 향상 있음을 보였다.

  • PDF

Pretraining Dense retrieval for Multi-hop question answering of Korean (한국어 다중추론 질의응답을 위한 Dense Retrieval 사전학습)

  • Kang, Dong-Chan;Na, Seung-Hoon;Kim, Tae-Hyeong;Choi, Yun-Su;Chang, Du-Seong
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.588-591
    • /
    • 2021
  • 다중추론 질의응답 태스크는 하나의 문서만 필요한 기존의 단일추론 질의응답(Single-hop QA)을 넘어서 복잡한 추론을 요구하는 질문에 응답하는 것이 목표이다. IRQA에서는 검색 모델의 역할이 중요한 반면, 주목받고 있는 Dense Retrieval 모델 기반의 다중추론 질의응답 검색 모델은 찾기 어렵다. 본 논문에서는 검색분야에서 좋은 성능 보이고 있는 Dense Retrieval 모델의 다중추론을 위한 사전학습 방법을 제안하고 관련 한국어 데이터 셋에서 이전 방법과의 성능을 비교 측정하여 학습 방법의 유효성을 검증하고 있다. 이를 통해 지식 베이스, 엔터티 링킹, 개체명 인식모듈을 비롯한 다른 서브모듈을 사용하지 않고도 다중추론 Dense Retrieval 모델을 학습시킬 수 있음을 보였다.

  • PDF

Anomaly Detection Algorithm Performance Analysis of Cloud Operating Environment using Stress Test (부하테스트를 활용한 클라우드 운영 환경의 이상탐지 알고리즘 성능 분석)

  • Kim, Jin Hui;Lee, Chan Jae;Yun, Ho Young
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.837-840
    • /
    • 2021
  • 안정적인 서버 운영을 위해 이상 패턴 및 개체를 식별하는 이상탐지 연구가 활발하게 연구되어 오고 있다. 이상탐지의 대표적인 예로 서버의 사용량 증가를 꼽을 수 있지만, 실제 이상 데이터 수집 및 현상의 재현이 어렵다는 점은 해당 연구의 어려움으로 존재한다. 본 연구는 다양한 시나리오 기반의 부하테스트를 설계하고, 클라우드 환경에서 이상 데이터를 생성 및 수집하였다. 해당 데이터는 이상탐지에 대표적으로 사용되는 알고리즘의 성능을 비교 분석에 활용하였으며, 실험을 통해 각 알고리즘의 신뢰 수준을 확인하였다. 이는 다양한 서버 운영 환경에 적합한 알고리즘을 채택하는데 활용 가능하며, 결과적으로 안정적이고 효율적인 서버 운영에 기여할 수 있을 것으로 사료된다.

Template Based Object Detection & Tracking by Chamfer Matching in Real Time Video (Chamfer Matching을 이용한 실시간 템플릿 기반 개체 검출 및 추적)

  • Islam, Md. Zahidul;Setiawan, Nurul Arif;Kim, Hyung-Kwan;Lee, Chil-Woo
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.92-94
    • /
    • 2008
  • In this paper we describe an approach for template based detection and tracking of objects by chamfer matching in real time video. Detecting and tracking of any objects is the key problem in computer vision. In our case we try for hand and head of human for detection and tracking by chamfer matching technique. Matching involves correlating the templates with the distance transformed scene and determining the locations where the mismatch is below a certain user defined threshold.