• Title/Summary/Keyword: 개착터널

Search Result 104, Processing Time 0.028 seconds

A Study on the Earth Pressure Characteristic of Cut-and-Cover Tunnel Lining by Centrifuge Model Experiment (원심모형시험에 의한 복개터널 복공의 토압특성에 관한 연구)

  • Lee, Myung-Woog;Park, Byung-Soo;Jung, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.107-116
    • /
    • 2004
  • This thesis is results of experimental works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Compared results model tests estimation with respect to displacements of the lining.

  • PDF

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.

An experimental study on the reduction method of earth pressure acting on the cut-and-cover tunnel lining (개착식 터널의 라이닝에 작용하는 토압경감대책에 관한 실험적 연구)

  • Kim, Sang-Yoon;Im, Jong-Chul;Park, Lee-Keun;Bautista, Ferdinand E.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.952-957
    • /
    • 2004
  • Cut and Cover Method is generally used in shallow tunnels and tunnel entrances with thin soil cover. In this type of cons0truction, backfilling is considered to be the most important process. In this process even though the backfill material is thoroughly compacted, compaction and self-weight due to vehicular vibration and pressure exerted by the soil cause the backfill material to undergo self-compression which leads to settlement. The settlement of the backfill material subjects the tunnel lining under excessive earth pressure which cause cracking and deformation. In the model test performed installation of geotextile on the sides and top of the tunnel was able to reduce the earth pressure acting on the tunnel lining.

  • PDF

A study of open cut box curvert tunnel strengthening systems in domestic underground railway (도시철도 개착식 터널의 내진성능보강시스템 개발에 대한 연구)

  • Kim, Ki-Hong;Kwon, Min-Ho;Kim, Jin-Ho;Hur, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1132-1137
    • /
    • 2010
  • There are execute of new laws about prevent of earthquake diaster in nation because of some increments of big earthquake occurence frequency. Now develope new composit plate by ductile fiber with strong mechanic materials, which compose of strengthening systems for the underground structures subject to forced displacements. This study is to focus to develop the retrofitting system for the cut and cuver tunnels built without earthquake type load scenario, so that it can provide the safety of existing urban subway system against earthquakes.

  • PDF

The Study on the Prediction and Measurement for the Behaviour of Structures and Weathered Soil & Rock in Excavating the Ventilation Shaft (지하철 개착구 굴착시 주변자반과 구조물에 대한 거동예측과 실측의비교평가)

  • 김융태;안대영;김득기;한창헌
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.63-76
    • /
    • 1994
  • This paper discusses contents of the existing design, the behaviours prediction on the strut and retaining wall around subsurfaces, and also evaluates the measured results in comparison with the management criterion during excavation period of ventilation shaft at Pusan-Subway 220. Field measurements showed that maximum displacement 23.74 mm at boundary site of multistratification and the weathered rock to be formed at 0.2~0.6 H of total excavating depth(H), 68 ton of maximum axial force and 4.4X102 kg/cm2 of stress on strut. The measured axial force exceeds prediction levels by up to 50 percent at the weathered soil & rock, and the others come under the category of their levels. The great gap of both field measurements and prediction on behaviour makes a difference of the site situation at the design stage and the practical working. This measured value is greatly safety in comparison with that of the safety criterion, but axial force at 4~5 strut of ventilation shaft l is higher than the prediction.

  • PDF

A Study on Evaluation Method of Seismic Performance on Cut and Cover Tunnel of Subway in Japan (일본 도시철도 개착식 터널의 내진성능 평가 방법에 대한 고찰)

  • Park, Beom-Ho;Lee, Woo-Chul;Kim, Jin-Ho;Lim, Ham-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.15-19
    • /
    • 2009
  • Due to the Japan's Kobe earthquake in 1995, a cut-and-cover tunnel, which is one of subway facilities, collapsed unexpectedly. As a result, also in Korea, seismic performance needs to be secured for the cut-and-cover tunnel and currently, the subway seismic design standard is based on the seismic performance. However, there is no standard for the damage level or stability level of a member for securing the seismic performance, and the definition of multi-level seismic performance is not sufficient. By contrast to this situation, in the Japan's evaluation method of seismic performance, design earthquake ground motion having reflected there into the subway driving stability is clearly defined and the seismic performance required for structures is classified in detail. This study analyzes the Japan's systematic evaluation method of seismic performance for cut-and-cover tunnels of subway.

  • PDF

Preliminary Design of Retrofitted System of Domestic Subway Tunnel (도시철도 개착식 터널의 내진성능보강시스템 기본설계)

  • Shin, Hong-Young;Kim, Doo-Kie;Kwon, Min-Ho;Chang, Chun-Ho;Kim, Ki-Hong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.6-9
    • /
    • 2009
  • The occurrence rate of the earthquake more than magnitude 5 has been increased since 1990 and the damage of the Odaesan earthquake, 2007 was serious. Due to that, one may say that Korea is not any more safe for the earthquake. Therefore, it is necessary to prepare strategies for possible damage due to strong earthquakes in future. This study is to focus to develop the retrofitting system for the cut and cuver tunnels built without earthquake type load scenario, so that it can provide the safety of existing urban subway system against earthquakes.

  • PDF

An Experimental Study on the Earth Pressure on the Underground Box Structure (지하 박스구조물에 작용하는 토압에 관한 실험적 연구)

  • 김은섭;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.235-246
    • /
    • 1999
  • Some of the underground structures such as subway tunnels are constructed by open cut method, in which the ground is excavated, a structure installed, and after that the excavated space is backfilled. In this case, because of their narrow and constrained boundary conditions, the earth pressure induced by self-weight of the backfilled soil acting on the underground structures is different from that of the classical theory. The vertical and horizontal earth pressures acting on upper slab and side wall of the underground structures constructed by open cut method are affected by the backfill geometry. The laboratory model tests were performed in the conditions of a variety of the shapes of backfill geometry and wall friction. And their results were compared with those from theories. As a result, it was observed that the distribution of the earth pressure acting on the underground structure is affected by the shapes of backfill geometry, the width of backfill, the angle of excavation and the wall friction.

  • PDF

An Analysis of Cut-slope Based on the Prediction of Joint Distribution inside the Cut-face (개착면 내부에서의 절리분포 예측을 통한 사면 해석)

  • Lee Chang-Sup;Chung Jin-Bo;Cho Taechin
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.391-398
    • /
    • 2004
  • An algebraic algorithm for predicting the joint trace distribution on the cut-face of rock slope based on the orientations and the locations of joints investigated in the borehole has been developed. Joint trace prediction is manipulated by utilizing the three dimensional plane equations of both joint planes and projection face, and the extent of trace within the projection area is calculated by considering the persistence of each joint plane. Joint trace prediction method is efficiently applied for analyzing the stability and the adequacy of support design of Gimhae Naesam cut-slope, which is structurally unstable due to slumping. Structural characteristics of rock mass is investigated by performing DOM drilling and the potential rock mass sliding inside slope face is analyzed by examining the orientations of joint planes which can induce the slope failure. Also, the efficiency of anchor support design is evaluated by considering the joint trace distribution on the anchor installation area and its sliding potential.

Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation (지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In recent years, ground subsidence has been frequently occurred by underground cavities due to the excessive groundwater inflow, caused by poor construction and management, during tunnel excavation and underground structure construction. In this study, a numerical model (SEEFLOW3D) was developed to estimate groundwater fluctuations for saturated-unsaturated poros media, evaluates the impact on ground excavation with open cut and non-open cut scenarios. In addition, the visual MODFLOW was applied to demonstrate the verification of the model compared with both results. Our results indicated that the RMSE and NRMSE was obtained to range over -3.95~5.7% and 0.56~4.62%, respectively. The developed model was expected to estimate groundwater discharges and apply analysis tool for optimum design of waterproof wall in future.