• Title/Summary/Keyword: 개질가스

Search Result 365, Processing Time 0.023 seconds

Evaluating the Efficacy of Commercial Polysulfone Hollow Fiber Membranes for Separating H2 from H2/CO Gas Mixtures (상용 폴리설폰 중공사막의 수소/일산화탄소 혼합가스 분리 성능 평가)

  • Do Hyoung Kang;Kwanho Jeong;Yudam Jeong;Seung Hyun Song;Seunghee Lee;Sang Yong Nam;Jae-Kyung Jang;Euntae Yang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.352-361
    • /
    • 2023
  • Steam methane reforming is currently the most widely used technology for producing hydrogen, a clean fuel. Hydrogen produced by steam methane reforming contains impurities such as carbon monoxide, and it is essential to undergo an appropriate post-purification step for commercial usage, such as fuel cells. Recently, membrane separation technology has been gaining great attention as an effective purification method; in this study, we evaluated the feasibility of using commercial polysulfone membranes for biogas upgrading to separate and recover hydrogen from a hydrogen/carbon monoxide gas mixture. Initially, we examined the physicochemical properties of the commercial membrane used. We then conducted performance evaluations of the commercial membrane module under various conditions using mixed gas, considering factors such as stage-cut and operating pressure. Finally, based on the evaluation results, we carried out simulations for process design. The maximum H2 permeability and H2/CO separation factor for the commercial membrane process were recorded at 361 GPU and 20.6, respectively. Additionally, the CO removal efficiency reached up to 94%, and the produced hydrogen concentration achieved a maximum of 99.1%.

Effect of Cu Addition in Cu/Fe/Zr-Mixed Metal Oxide Mediums for Two-step Thermochemical Methane Reforming (2단계 열화학 메탄 개질을 위한 Cu/Fe/Zr-혼합 산화물 매체 내 Cu 첨가 효과)

  • Cha, Kwang-Seo;Kim, Hong-Soon;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seak;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.618-624
    • /
    • 2007
  • thermochemical methane reforming consisting of two steps on Cu/Fe/Zr mixed oxide media was carried out using a fixed bed infrared reactor. In the first step, the metal oxide was reduced with methane to produce CO, $H_2$ and the reduced metal oxide in the temperature of 1173 K. In the second step, the reduced metal oxide was re-oxidized with steam to produce $H_2$ and the metal oxide in the temperature of 973 K. The reaction characteristics on the added amounts of Cu in Cu/Fe/Zr mixed oxide media and the cyclic tests were evaluated. With the increase of the added amount of Cu in Cu/Fe/Zr mixed oxide media, the conversion of $CH_4$, the selectivity of $CO_2$ and the $H_2/CO$ molar ratio were increased, while the selectivity of CO was decreased in the first step. On the other hand, the evolved amount of $H_2$ was decreased with increasing the added amount of Cu in the second step. The $Cu_xFe_{3-x}O_4/ZrO_2$ medium added with Cu of x = 0.7 showed good regeneration properties in the 10th cyclic tests indicating that the medium had high durability. In addition, the gasification of the deposited carbon in the water splitting step was promoted with the addition of Cu in the media.

Plasma-Surface-Treatment of Nylon 6 Fiber for the Improvement of Water-Repellency by Low Pressure RF Plasma Discharge Processing (나일론 6 섬유의 발수성 향상을 위한 RF 플라스마 표면처리)

  • Ji, Young-Yeon;Jeong, Tak;Kim, Sang-Sik
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • It has been reported that the surface properties of the plasma treated material were changed while maintaining its bulk properties. In this study, surface modification of nylon fiber by plasma treatment was tried to attain high water-repellency Nylon fiber was treated with RF plasma under a vacuum system using various parameters such as gas specious, processing time and processing power. Morphological changes by low pressure plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, the mechanical and inherent properties were analyzed by tensile strength, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The high water-repellency property of nylon fiber was evaluated by a water-drop standard test under various conditions in terms of aging effect. The results showed that the water-repellency of plasma-surface-treated nylon fiber was greatly improved compared to untreated nylon fiber.

Fabrication of Pd/YSZ Cermet Membrane for Hydrogen Separation (수소 분리를 위한 Pd/YSZ Cermet 분리막의 제조)

  • Jeon, Sung-Il;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.148-154
    • /
    • 2011
  • Metal-ceramic composite membrane have been developed to separate hydrogen from mixed gases, particularly product streams generated during coal gasification and methane reforming. Cermet membrane was fabricated with palladium as hydrogen-permeable metal and $Y_2O_3$-stabilized $ZrO_2$ (YSZ) as ceramic supporter. As-prepared membrane showed dense structure with continuous channel of palladium. The hydrogen flux of Pd/YSZ membrane have been measured in the range of 0.5~2 atm with 100% hydrogen gas. The results indicate that the hydrogen flux was 0.333 mL/$min{\cdot}cm^2$ at $450^{\circ}C$ and 2 atm. The crack was formed in the surface and cross-section of membrane.

A Study on Performance of Solid Oxide Fuel Cell Stack for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 스택 성능에 관한 연구)

  • Park, Sang-Kyun;Kim, Young-Jin;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.406-413
    • /
    • 2011
  • Recently the fuel cell has been spotlighted as a technology to reduce greenhouse gases emission from a ship. In this research, internal reforming 500kW solid oxide fuel cell stacks fueled by methane for a ship were developed. Characteristics of power and efficiency depending on the number of cells in the stack, hydrogen conversion ratio, and active area of the cell are evaluated. Also the effects of air and methane supplying conditions on performance are analyzed. As a result, as the number of cells, hydrogen conversion ratio, active area of the cell, or supplied air flow rate increase, the stack power and efficiency increase. When the methane flow rate increases, the power increases. However the efficiency decreases. In addition, the case at the current of 976.4 A, voltage of 529.1 V, with corresponding power of 516.6 kW shows that the efficiency of fuel cell stack is 42.91%.

Surface Properties of Modified Activated Carbon for Ammonia Gas Removal (암모니아 가스 제거용 개질 활성탄의 표면특성)

  • Lee, Seongwoo;Oh, Gilyong;Kim, Rina;Kim, Daekeun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.317-324
    • /
    • 2013
  • This research assessed the surface properties of modified activated carbons with three different acids and five different metals for ammonia gas removal. Raw bituminous coal-based activated carbon ($4{\times}8$ mesh) had low adsorption capacity of 0.72 mg $NH_3/g$ based on the analysis in the column adsorption experiment. Adsorption capacities of carbons modified with $CH_3COOH$, $H_3PO_4$, and $H_2SO_4$ increased up to 3.34, 21.00, and 35.21 mg $NH_3/g$, respectively. Those of carbons with Cu, Zn, Zr, Fe, and Sn were 9.63, 9.13, 7.09, 25.12 and 15.03 mg $NH_3/g$. Ammonia adsorption was enhanced by the presence of surface oxygen groups on carbon materials, which influenced pH of carbon surface. BET surface area of raw carbon was analyzed to be $1087m^2/g$, but it decreased by carbon surface modification. Fe-impregnated carbon showed $503.02m^2/g$ of surface area. These observations were mostly caused by chemical adsorption.

Studies on the Gas Permeation Behaviors Using the Surface Fluorinated Poly(phenylene oxide) Membranes (표면불소화에 따른 Poly(phenylene oxide)막의 기체투과거동 연구)

  • Lee, Bo-Sung;Kim, Dae-Hoon;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • This study deals with the surface fluorination of poly(phenylene oxide) (PPO) with the direct contact of 100 ppm fluorine gas. To characterize the surface fluorinated membranes, the contac angle measurement, X-ray photoelectron microscopy analysis and the gas permeation experiments were performed. As the fluorination time increases, the hydrophobicity of membrane surfaces is increased by the surface characterization. In general, as expected, the overall gas permeability was reduced. Typically, the permeability reduction of 33% for nitrogen, 23% for oxygen and 3% for carbon dioxide were observed when the membranes were exposed in 100 ppm environment for 60 min., meanwhile the selectivity was increased from 3.92 to 4.47 for $O_2/N_2$ and 18.09 to 25.4 for $O_2/N_2$, respectively.

Development of the 5kW Class Polymer Electrolyte Fuel Cell System for Residential Power Generation (5kW 급 주택용 고분자 연료전지 시스템)

  • Yang, Tae-Hyun;Park, Gu-Gon;Yoon, Young-Gi;Lee, Won-Yong;Yoon, Wang-Lai;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2003
  • Polymer electrolyte fuel cells(PEFC) have been considered to be a suitable candidate for residential, portable and mobile applications, due to their high efficiency and power density, even at low operating temperature. KIER developed a 5kW class PEFC system for residential application and operated the system for over 1,000 hours. To develop a 5kW PEFC system, performance of a cell was improved through successive tests of single cell of small and large area. Fabrication of three 2,5 kW class stacks, design and fabrication of natural gas reformer, design of auxiliary equipments such as DC/DC converter, DC/AC inverter and humidifying units were carried out along with integration of components, operation and evaluation of total system. During the development period from 1999 to 2001, MEA(membrane electrode assembly) fabrication technologies, design and fabrication technologies for separators, stacking technologies and so on were developed, thereby providing basis for developing stacks of higher efficiency and power density in the future. Experience of development of natural gas reformer opened possibilities to use various kinds of fuels. Main results obtained from the development of a 5kW class PEFC system for residential application are summarized.

Adsorption of Carbon Dioxide using Pelletized AC with Amine impregnation (아민 함침 입자상 활성탄의 특성 분석 및 이산화탄소 흡착능 평가연구)

  • Lim, Yun-Hui;Jo, Young-Min;Kim, Seung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-95
    • /
    • 2013
  • This study attempts to capture the low level carbon dioxide from indoor spaces using a granular activated carbon (WSC-470) which was modified with primary monoethanolamine. Adsorption capacity of the prepared adsorbents was evaluated for pure $CO_2$ flow and 3000 ppm as a function of MEA concentration and solvents such as distilled water, ethanol and methanol. The AC based adsorbents then were characterized in terms of pore structure by BET and chemical functionalities by XPS. While high concentration of MEA reduced specific surface area, porosity and micro pores, nitrogen content which can enhance the surface basicity was increased. The maximum adsorption capacity decreased comparing to the initial AC pellets, whilst the potential of selective adsorption amount at low level $CO_2$ was increased at 45% (0.73 mmol/g).

Gas Permeation Properties of Sulfonated 6FDA-based Polyimide Membranes (설폰화된 6FDA계 폴리이미드 막을 이용한 기체투과특성)

  • Rhim, Ji-Won;Yoon, Seok-Won;Lee, Byung-Seong;Lee, Bo-Sung;Cheong, Seong-Ihl
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.237-243
    • /
    • 2009
  • Polyimides synthesized by using 2,2'-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and 4,4'-diaminodiphenylmethane (DAM) were sulfonated according to reaction times, 5 min to 20 min. And the resulting polyimide membranes were investigated in terms of permeability and separation factor for $N_2$, $O_2$, and $CO_2$ gases. The introduction of bulky group, $-{SO_3}H$, leads to the decreases of both diffusivities and solubilities for all the range of reaction times. At 20 min of sulfonation, the diffusivity and solubility of $N_2$ decrease up to 21% and 26%, respectively. Overall separation efficiencies for $O_2/N_2$ and $CO_2/N_2$ increase as the reaction time increases to 20 min.