Proceedings of the Korea Contents Association Conference
/
2015.05a
/
pp.423-424
/
2015
본 논문은 학습 수준에 따라 개인별 또는 그룹별로 학습이 가능하도록 지원하는 단체 학습 시스템을 제안한다. 제안하는 시스템은 교수자가 학습능력과 수준의 차이에 따라 학습자를 수준별로 그룹을 임의로 설정하여 설정된 개별 학습자 혹은 학습자 그룹별로 각기 다른 학습 콘텐츠를 제공하도록 함으로써 학생들이 같은 공간, 간은 시간대에 있더라도 개인별 맞춤 학습을 진행하는 것이 가능하다. 개별 학습자 또는 학습자 그룹별로 학습을 독립적으로 진행할 수 있도록 제어함으로써 모든 학습자는 개인화된 학습 시스템을 각기 사용하는 것과 같은 효과를 누리게 된다.
Proceedings of the Korea Information Processing Society Conference
/
2001.04b
/
pp.1041-1044
/
2001
현재 웹 상에서 이루어지는 교육은 개별 학습자의 학습 기대 수준에 따라 주문형(customization)과 맞춤형(personalization)교육이 요구되고 있으나 대부분 웹을 통한 교육이 획일적 커리큘럼에 따라 진행되고, 동일한 형태의 피드백을 제공하고 있어 학습자 개개인의 수준에 맞는 컨텐츠의 제공과 적절한 피드백이 이루어지지 못하고 있다. 따라서 학습 효과를 높이기 위해서는 학습자 수준에 맞는 차별화된 컨텐츠를 구성하여 제공하여야 한다. 본 연구에서는 수준별 학습, 맞춤형 교육 서비스를 제공하기 위한 컨텐츠 구성방법에 관하여 논의한다. 양질의 맞춤형 컨텐츠를 구성하기 위해 컨텐츠를 영역별로 분류하여 모듈화하고, 맞춤형 컨텐츠를 효율적으로 관리하여 학습자의 지식영역별 습득정도를 파악하고, 학습자의 수준에 맞게 융통성이 있으며 동적으로 컨텐츠를 재구성함으로써 학습자에게 가장 적절한 컨텐츠를 추출하여, 반복 학습을 통한 교육의 질적 제고를 기대한다.
Journal of Korea Society of Industrial Information Systems
/
v.11
no.4
/
pp.25-31
/
2006
With the increasing demand of foreign language education in colleges, an effective testing and study system is also needed especially for large scale classes. In this paper, 1 propose a new online system for running large scale foreign language classes which supports not only testing function but also individually customized studying and diagnosis functions. Using the proposed system enables saving of testing space and helps all students get equally good testing and study environment regardless of class size and lecturers.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.265-266
/
2009
컴퓨터 프로그래밍 학습은 학습자 개개인의 학습 수준에 따라 맞춤형 학습으로 진행될 때 학습 효과가 크다. 본 연구에서는 연구자에 의해 다년간 다양한 방법으로 시도되었던 학습자의 수준별 맞춤형 학습 유형들을 소개하고 각 학습 유형들이 학습에 참여한 학습자들의 취업률에 어떤 영향을 미쳤는지를 분석해보고자 하였다.
Proceedings of the Korean Information Science Society Conference
/
2006.10a
/
pp.77-82
/
2006
시 공간상의 제약 없이 다양한 정보의 제공이 가능한 현재의 웹 환경을 통해서 우리나라는 다양한 정보와 자료를 활용하여 학습자 중심의 탐구활동 및 자기 주도적 학습을 강구하고 있다. 따라서, 전국 초중등 학생들을 대상으로 시도별 특화된 맞춤 서비스, 즉 LMS(학습관리시스템)을 구축 운영하고 있지만 현재 시스템에서는 다양하고 방대한 학습 콘텐츠에서 학습자가 자신에게 맞는 과정을 검색, 신청하는데 많은 어려움이 있다. 본 논문에서는 이런 어려움을 해결하기 위해서 학습자가 개인의 학습내용을 빠르고 편리하게 등록하고 검색할 수 있게 하고, 시스템의 지능적인 의미검색이 가능하게 하기 위해서 시맨틱 웹과 AJAX기술을 이용한 개인 맞춤형 학습관리 시스템 설계 및 구현을 하였다.
Kim, Un Yong;Yun, Jeongrok;Kim, Hoemin;Chun, Sungkuk
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.549-550
/
2021
사용자에게 맞춘 개인화된 제품과 서비스를 제공하는 기술의 발전으로 개인화의 수요는 점점 늘어날 것으로 전망하고 있다. 또한 개인 맞춤형으로 전문 스포츠 선수화, 족부 장애우를 위한 정형 제화 등 전문적인 기능 중심의 개인화나 패션을 위한 스타일 중심의 개인화 등 개인 맞춤 제작 신발을 제작할 때 기존의 아날로그적인 방식으로 발 변인을 측정했을 때 각 변인에 대해 기준점이 명확하지 않아서 재현성이 떨어진다. 따라서 본 논문에서는 자를 이용해 간단히 측정 가능한 기본적인 발 변인 이용하여 다른 변인들을 학습하고 딥러닝을 이용해 추정하는 방법에 대해 서술한다. 이를 위해 20개의 발 변인을 휙득 하였고 그 중 6개의 기본적인 발 변인을 이용해 14개 변인을적합 방지를 위해 Dorpout을 적용해 학습하고 학습한 데이터를 이용해 학습하지 않은 데이터를 테스트해 각 변인별 결과를 보여준다.
본 논문은 사용자 수준에 적합한 맞춤형 학습코스를 추천하여 학습효과를 향상시킬 수 있는 추천모델을 개발하고, 효과분석을 위한 방안을 제시한다. 학습자 개개인의 학습수준이나 학습내용 등에 따라 적합한 학습주제를 선정하여 제공하는 것은 중요하나, 일반적인 추천은 전문가 그룹을 활용한 사람중심의 추천으로 시간이 오래 걸리는 등 자원의 비효율적 한계점[1]을 가지고 있다. 이를 극복하기 위해, TF-IDF를 이용해 단어별 가중치를 계산하여 고빈도 단어를 추출하여 벡터 공간에 배치시키고, Cosine Similarity 기법을 이용해 벡터간의 유사도를 측정하였다. 학습자 프로파일을 분석하고, 학습스킬간의 연관성을 고려하여 맞춤형 학습코스를 추천하기 위해, 워드 임베딩 기법을 적용하였고, 이를 위해 오픈소스 Gensim[2]을 이용하였다. 맞춤형 학습코스 추천 모델의 효과를 분석하기 위한 실험을 설계하고 평가 문항지를 개발하였다.
In this paper, we have designed and implemented a personalized health training system which provides health training methods using 3D animation based on the data from a professional trainer, after a trainee inputs individual physical characteristics. Many trainers at fitness centers provide only sketchy training method and usage of fitness machines not appropriate training method for trainee's physical characteristics. Individual characteristics. Individual characteristics prepared tabular input which consists of exercise goals, exercise areas, whether or not the normal movement, and RM. The system provides the training methods, the effects of exercise, and the health training motions through searching the database more accurately.
To help users who are experiencing difficulties finding the right learning course corresponding to their level of proficiency, we developed a recommendation model for personalized learning course for Intelligence Tutoring System(ITS). The Personalized Learning Course Recommendation model for ITS analyzes the learner profile and extracts the keyword by calculating the weight of each word. The similarity of vector between extracted words is measured through the cosine similarity method. Finally, the three courses of top similarity are recommended for learners. To analyze the effects of the recommendation model, we applied the recommendation model to the Women's ability development center. And mean, standard deviation, skewness, and kurtosis values of question items were calculated through the satisfaction survey. The results of the experiment showed high satisfaction levels in accuracy, novelty, self-reference and usefulness, which proved the effectiveness of the recommendation model. This study is meaningful in the sense that it suggested a learner-centered recommendation system based on machine learning, which has not been researched enough both in domestic, foreign domains.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.21
no.3
/
pp.99-105
/
2021
In addition to the OTT video production service represented by Nexflix and YouTube, a personalized recommendation system for content with artificial intelligence has become common. YouTube's personalized recommendation service system consists of two neural networks, one neural network consisting of a recommendation candidate generation model and the other consisting of a ranking network. Netflix's video recommendation system consists of two data classification systems, divided into content-based filtering and collaborative filtering. As the online platform-led content production is activated by the Corona Pandemic, the field of virtual influencers using artificial intelligence is emerging. Virtual influencers are produced with GAN (Generative Adversarial Networks) artificial intelligence, and are unsupervised learning algorithms in which two opposing systems compete with each other. This study also researched the possibility of developing AI platform based on individual recommendation and virtual influencer (metabus) as a core content of OTT in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.