• Title/Summary/Keyword: 개수로 유동

Search Result 142, Processing Time 0.025 seconds

Study on the Utilization Status of the Woody Landscape Plants in Korea ( I ) (우리나라의 조경공사의 조경수목 활용실태에 관한 연구(I))

  • 이동철;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.15 no.2
    • /
    • pp.23-41
    • /
    • 1987
  • This study was conducted to investigate the planting status of the woody landscape plant species and to obtain some fundamental informations for improvement of production and sales circulation of the woody landscape plants. The details of 328 landscape projects which were carried out for 2 years from 1983 to 1984 were surveyed to investigate the utilization status of the woody landscpe plants. The results obtained are summarized as fellows ; 1) The utilization rate of the trees to the shrubs as woody landscape plants was 1 : 6 and that of the evergreens to deciduous plants was 1 : 4. The plant species which were most frequently used in landscaping were Buxus microphylla koreana, Juniperus chinensis, Zelkova serrata and Acer saccharinum, howevr, plants which were used in largest quantitites were Ligustrum obtusifolium, Forsythia koreana, Buxus microphylla koreans and Rhododendron yedoense var. poukhanense. 2) The number of plants planted among 3 shrub species(Ligustrum obtusifolium, Forsythia koreana and Buxus microphylla korana) exceeded half of the total number of shrubs planted for landscping, however, the number of plants planted among 8 tree species including Pinus koreainensis were about half of the total tree species. 3) The number of government price specified plant species was only 20%, but the utilization frequency of the price specified plants was as much as 6 times than unspecified plants and 85% of plants used in landscaping works were the price specified plants. The utilization rate of the price specified plants was significantly high in the shrubs than the trees and in the evergreen than deciduous plants. 4) The amounts in use of the price specified standardized plants were significantly more than those of unstandardized plants. When the plant heights are same, the plants having wider canopy or stem diameter were rather frequently used in the landscaping works. The ratio of the width of the canopy or stem diameter to the stem length of the plants in the Korean standard is significantly greater than that in the Japanese standard.

  • PDF

The Physical Characteristics of the flow field and the Form of Arrested Salt Wedge (정상 염수쇄기의 형상과 흐름 장의 물리적 특성)

  • 이문옥
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.62-73
    • /
    • 1990
  • An experimental study is performed in order to catch the characteristics of the flow field at arrested salt wedge, using a rectangular open channel. Arrested salt wedge is generally so stable that the observations are easy, but velocities and interfacial waves are measured with the aid of visualization method, by injection of fluorescent dyes. The density interface, which is defined as the zone of maximum density variation with depth, exists in about 0.5 cm below the visual interface, and vertical density profile is quite well satisfied with Homeborn model. Interfacial layer has high turbulent intensity and its thickness decreases as the overall Richardson number increases and has magnitude of roughly 17% of upper layer. Cross-sectional velocity distribution just shows the influence of a side-wall friction and in the upper layer vertical velocity profile also becomes uniformly as Reynolds number increases, but in the lower layer it shows nearly parabolic type. Supposes that we divide salt wedge into three domains, that is, river mouth, intermediate and tip zone, entertainment coefficient is small at the intermediate zone and large at the river mouth and the tip zone. River mouth or intermediate zone has comparatively stable interface and capillary wave therefore s produced and propagated downstream. On the other hand, tip zone is very unstable, cusping ripple or bursting ripple is then produced incessantly. Arrested salt wedge form is nearly linear and has no relation to densimetric Froude number and Reynolds number.

  • PDF

Origin and Distribution of Cut and Fill Structures in the Southwestern Margin of Ulleung Basin, East Sea (동해 울릉분지 남서주변부에 발달하는 침식충전구조의 기원 및 분포)

  • Park, Yong Joon;Kang, Nyeon Keon;Yi, Bo Yeon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.39-53
    • /
    • 2015
  • Analysis of multi-channel seismic reflection profiles acquired from the southwestern margin of Ulleung Basin reveals that the cut and fill structures, which show U-shaped or V-shaped morphology, occur on variable size. The cut and fill structure mostly consists of fine-grained sediments on the well data and is characterized by transparent or semitransparent seismic facies on the seismic section. Such cut and fill structures dominantly occur in the syn-compressional megasequence (MSQ3), which was deposited during basin deformation of late Miocene, among the four megasequences of the study area. These cut and fill structures can be divided into three groups based on their size and formation time. The cut and fill structures of Group I were formed when Dolgorae structure was active, and occurred on a small scale. The cut and fill structures of group II were formed when both Dolgorae structure and Gorae V structure were active, and the number and size of those increased compared with group I. The cut and fill structures of group III were formed when Dolgorae structure was weaken gradually but Gorae V structure kept active, and the number and size of those decreased in comparison with group II. Consequently the cut and fill structures in the southwestern margin of Ulleung basin are interpreted as submarine canyon based on spatial distribution, size and fill sediment. They were controlled by the tectonic movement in response to basin closure and tectonic-induced sediment supply variation.

Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study (마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구)

  • SHAMSUDDEEN, MOHAMED MURSHID;KIM, SEUNG-JUN;MA, SANG-BUM;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.

Particle Based Discrete Element Modeling of Hydraulic Stimulation of Geothermal Reservoirs, Induced Seismicity and Fault Zone Deformation (수리자극에 의한 지열저류층에서의 유도지진과 단층대의 변형에 관한 입자기반 개별요소법 모델링 연구)

  • Yoon, Jeoung Seok;Hakimhashemi, Amir;Zang, Arno;Zimmermann, Gunter
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.493-505
    • /
    • 2013
  • This numerical study investigates seismicity and fault slip induced by fluid injection in deep geothermal reservoir with pre-existing fractures and fault. Particle Flow Code 2D is used with additionally implemented hydro-mechanical coupled fluid flow algorithm and acoustic emission moment tensor inversion algorithm. The output of the model includes spatio-temporal evolution of induced seismicity (hypocenter locations and magnitudes) and fault deformation (failure and slip) in relation to fluid pressure distribution. The model is applied to a case of fluid injection with constant rates changing in three steps using different fluid characters, i.e. the viscosity, and different injection locations. In fractured reservoir, spatio-temporal distribution of the induced seismicity differs significantly depending on the viscosity of the fracturing fluid. In a fractured reservoir, injection of low viscosity fluid results in larger volume of induced seismicity cloud as the fluid can migrate easily to the reservoir and cause large number and magnitude of induced seismicity in the post-shut-in period. In a faulted reservoir, fault deformation (co-seismic failure and aseismic slip) can occur by a small perturbation of fracturing fluid (<0.1 MPa) can be induced when the injection location is set close to the fault. The presented numerical model technique can practically be used in geothermal industry to predict the induced seismicity pattern and magnitude distribution resulting from hydraulic stimulation of geothermal reservoirs prior to actual injection operation.

A Numerical Solution Method of the Boundary Integral Equation -Axisymmetric Flow- (경계적분방정식의 수치해법 -축대칭 유동-)

  • Chang-Gu,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.38-46
    • /
    • 1990
  • A numerical solution method of the boundary integral equation for axisymmetric potential flows is presented. Those are represented by ring source and ring vorticity distribution. Strengths of ring source and ring vorticity are approximated by linear functions of a parameter $\zeta$ on a segment. The geometry of the body is represented by a cubic B-spline. Limiting integral expressions as the field point tends to the surface having ring source and ring vorticity distribution are derived upto the order of ${\zeta}ln{\zeta}$. In numerical calculations, the principal value integrals over the adjacent segments cancel each other exactly. Thus the singular part proportional to $\(\frac{1}{\zeta}\)$ can be subtracted off in the calculation of the induced velocity by singularities. And the terms proportional to $ln{\zeta}$ and ${\zeta}ln{\zeta}$ can be integrated analytically. Thus those are subtracted off in the numerical calculations and the numerical value obtained from the analytic integrations for $ln{\zeta}$ and ${\zeta}ln{\zeta}$ are added to the induced velocity. The four point Gaussian Quadrature formula was used to evaluate the higher order terms than ${\zeta}ln{\zeta}$ in the integration over the adjacent segments to the field points and the integral over the segments off the field points. The root mean square errors, $E_2$, are examined as a function of the number of nodes to determine convergence rates. The convergence rate of this method approaches 2.

  • PDF

Optimization of sidewalls for a Double-Passage Cascade Experiment (2피치 유로 캐스케이드 실험을 위한 벽면 최적화에 관한 연구)

  • Cho, Choong-Hyun;Ahn, Koo-Kyoung;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.969-978
    • /
    • 2008
  • In a linear cascade experimental apparatus, when it adopts only few blades as well as satisfies the periodic condition between blades, it gives several advantages in experiment. In this study, wall design on a cascade experimental apparatus is conducted to obtain the periodic condition on two blades installed within a passage of which the width is double pitch. The Mach number difference on the blade surface obtained with the periodic and wall condition is chosen as an objective function, and twelve design variables which are related to the wall shape are selected. A wall shape is designed using a gradient-based optimization method. Adjustment of range and weighting function are applied to calculate the objective function to avoid unrealistic evaluation of the objective function. By applying these methods, the computed results show same flow structures obtained with the periodic condition.

A Mechanism for Handling Selfish Nodes using Credit in Sensor Networks (센서 네트워크에서 크레딧을 이용한 이기적인 노드 처리 방안)

  • Choe, Jong-Won;Yoo, Dong-Hee
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.120-129
    • /
    • 2008
  • The purpose of sensor network is gathering the information from sensor nodes. If there are selfish node that deliberately avoid packet forwarding to save their own energy, the sensor network has trouble to collect information smoothly. To solve this problem we suggest a mechanism which uses credit payment schema according to the amount of forwarding packets. Sensor nodes use credits to send their own message and they forward packets of other sensor nodes to get credits. To offer authenticity we combined the roles of sink node and server, also we used piggybacking not to send additional report message. The packet trace route is almost fixed because sensor node doesn't have mobility. In this case, it happens that some sensor nodes which don't receive forwarding packets therefore they can't get credit. So, we suggested the way to give more credits to these sensor nodes. Finally, we simulated the suggested mechanism to evaluate performance with ns2(network simulator). As a result, packet transmission rate was kept on a high rate and the number of arrival packets to sink node was increased. Also, we could verify that more sensor nodes live longer due to deceasing the energy consumption of sensor nodes.

Adaptive Dynamic Slot Assignment of VBR Traffics Using In-band Parameters in Wireless ATM (무선 ATM에서 In-Band 파라미터를 이용한 VBR 트래픽의 적응적 슬롯 할당)

  • Paek, Jong-Il;Jun, Chan-Yong;Kim, Young-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.7
    • /
    • pp.30-37
    • /
    • 2002
  • In this paper, we propose a new adaptive slot assignment algorithm called In-VDSA in order to guarantee the QoS(Quality of Service) of VBR(Variable Bit Rate) traffics in wireless ATM and maximize efficiency in use of wireless channels. In the proposed algorithm, the status of terminal buffers is encoded in signed number on the GFC(Generic Flow Control) field of an ATM cell header and piggybacked. And also, the number of slots to be assigned to the next frame is adjusted effectively, which is different to methods in the conventional slot assignment algorithms. As a result, we can guarantee QoS such as CLR(Cell Loss Rate) and cell delay and achieve the higher utilization of channels. The validity of the proposed algorithm has been justified in performance by analysis through simulation results using the BONeS tool and comparison with conventional methods.

A study on operation method of handling equipments in automated container terminals (자동화 컨테이너터미널에서 운송 장비의 운영방안에 관한 연구)

  • 이상완;최형림;박남규;박병주;권해경;유동호
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2002.11a
    • /
    • pp.296-303
    • /
    • 2002
  • The main subject to become a hub port is automation. The automated container terminal has already operated in advanced ports and it has been planned for the basic planning and operation design in domestic case. The key of automated container terminal is effective operation of both ATC(automated transfer crane) and AGV(automated guided vehicle) which is automated handling equipments. This is essential to poductivity of automated container terminal. This study suggests the most optimal method of equipment operation in order to minimize loading time using each three types of effective ATC operation methods and AGV dispatching rules in automated container terminals. As the automated equipment operation causes unexpected deadlocks or interferences, it should be proceeded on event-based real time. Therefore we propose the most effective ATC operation methods and AGV dispatching rules in this paper. The various states occurred in real automated container terminals are simulated to evaluate these methods. This experiment will show the most robust automated equipment operation method on various parameters(the degree of yard re-marshaling, the number of containers and the number of AGVs)

  • PDF