Gu, Dongjun;Joo, Youngdon;Vu, Van Manh;Lee, Jungwoo;Ahn, Heejune
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.256-259
/
2021
본 논문에서는 사람을 키넥트로 촬영하여 3 차원 아바타로 복원하여 연예인처럼 춤을 추게 하는 기술을 설계 구현하였다. 기존의 순수 딥러닝 기반 방식과 달리 본 기술은 3 차원 인체 모델을 사용하여 안정적이고 자유로운 결과를 얻을 수 있다. 우선 인체 모델의 기하학적 정보는 3 차원 조인트를 사용하여 추정하고 DensePose를 통하여 정교한 텍스쳐를 복원한다. 여기에 3 차원 포인트-클라우드와 ICP 매칭 기법을 사용하여 의상 모델 정보를 복원한다. 이렇게 확보한 신체 모델과 의상 모델을 사용한 아바타는 신체 모델의 rigged 특성을 그대로 유지함으로써 애니메이션에 적합하여 PSY 의 <강남스타일>과 같은 춤을 자연스럽게 표현하였다. 개선할 점으로 인체와 의류 부분의 좀 더 정확한 분할과 분할과정에서 발생할 수 있는 노이즈의 제거 등을 확인되었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.190-191
/
2020
본 논문은 모델 분할 기법과 중복성 제거 기법을 통한 대용량 3차원 메쉬 모델의 고속 압축 기술에 관한 내용이다. 대용량 3차원 메쉬 모델의 비실시간 압축은 실시간 스트리밍 응용 시나리오에서 제약점으로 작용하고 있고, 본 논문에서는 인코딩 시간을 줄이기 위해 경량 메쉬 분할 방법을 통해 대용량 메쉬를 여러 개의 작은 메쉬로 분할하고, 각각의 분할된 메쉬를 병렬적으로 인코딩하여 처리 속도를 개선하였다. 또한, 메쉬 모델 내의 같은 기하학적 정보를 가진 중복된 정점들이 존재할 수 있으며, 중복된 정보를 제거하고 제거된 정점과 삼각형 표면 간의 연결 정보를 갱신하는 과정을 통해 메쉬 모델의 기하학적 정보를 유지하면서 압축 성능을 확보하였다.
최근 딥러닝 분야에서 모델 학습을 가속화하기 위해, 실수 표현 시 사용하는 비트 수를 줄이는 양자화 연구가 활발히 진행되고 있다. 본 논문은 추천 시스템 모델 중 하나인 행렬 분해 모델(Matrix Factorization, MF)에 대한 양자화 수행 시, 발생할 수 있는 학습 정확도 손실을 방지하기 위한 정밀도 변환 방안을 제시한다. 우리는 실세계 데이터셋을 이용한 실험을 통해, 제안 방안이 적용된 MF 모델은 양자화 기법이 적용되지 않은 모델과 비슷한 추천 정확도를 보이며, 약 30% 개선된 속도로 학습됨을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.25-29
/
2019
딥러닝을 이용한 한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식으로 나뉘어 연구되어 왔다. 전이 기반 방식은 입력 버퍼와 스택으로부터 자질을 추출하여 모델을 통해 액션을 결정하고 액션에 따라 파스트리를 생성해 나가는 상향식(Botton-Up)의 지역적 모델이고 그래프 기반 방식은 문장 내의 모든 단어에 대해 지배소, 의존소가 될 수 있는 점수를 딥러닝 모델을 통해 점수화하여 트리를 생성하는 전역적 모델이다. 본 논문에서는 Dual Decomposition을 이용하여 하이브리드 방식으로 전이 기반 파서와 그래프 기반 파서를 결합하는 방법을 제안하고 BERT 언어 모델을 반영하여 세종 데이터 셋에서 UAS 94.47%, LAS 92.58% 그리고 SPMRL '14 데이터 셋에서 UAS 94.74%, UAS 94.20%의 성능을 보여 기존 그래프 기반 파서의 성능을 더욱 개선하였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.629-632
/
2021
기계 번역(machine translation)은 자연 언어로 된 텍스트를 다른 언어로 자동 번역 하는 기술로, 최근에는 주로 신경망 기계 번역(Neural Machine Translation) 모델에 대한 연구가 진행되었다. 신경망 기계 번역은 일반적으로 자기회귀(autoregressive) 모델을 이용하며 기계 번역에서 좋은 성능을 보이지만, 병렬화할 수 없어 디코딩 속도가 느린 문제가 있다. 비자기회귀(non-autoregressive) 모델은 단어를 독립적으로 생성하며 병렬 계산이 가능해 자기회귀 모델에 비해 디코딩 속도가 상당히 빠른 장점이 있지만, 멀티모달리티(multimodality) 문제가 발생할 수 있다. 본 논문에서는 단어 정렬(word alignment)을 이용한 비자기회귀 신경망 기계 번역 모델을 제안하고, 제안한 모델을 한국어-영어 기계 번역에 적용하여 단어 정렬 정보가 어순이 다른 언어 간의 번역 성능 개선과 멀티모달리티 문제를 완화하는 데 도움이 됨을 보인다.
Kim, Jungwook;Whang, Taesun;Kim, Bongsu;Lee, Saebyeok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.509-513
/
2021
개체명 인식이란, 문장에서 인명, 지명, 기관명, 날짜, 시간 등의 고유한 의미의 단어를 찾아서 미리 정의된 레이블로 부착하는 것이다. 일부 단어는 문맥에 따라서 인명 혹은 기관 등 다양한 개체명을 가질 수 있다. 이로 인해, 개체명에 대한 중의성을 가지고 있는 단어는 개체명 인식 성능에 영향을 준다. 본 논문에서는 개체명에 대한 중의성을 최소화하기 위해 사전을 구축하여 ELECTRA 기반 모델에 적용하는 학습 방법을 제안한다. 또한, 개체명 인식 데이터의 일반화를 개선시키기 위해 동적 마스킹을 이용한 데이터 증강 기법을 적용하여 실험하였다. 실험 결과, 사전 기반 모델에서 92.81 %로 성능을 보였고 데이터 증강 기법을 적용한 모델은 93.17 %로 높은 성능을 보였다. 사전 기반 모델에서 추가적으로 데이터 증강 기법을 적용한 모델은 92.97 %의 성능을 보였다.
Kim, Bongsu;Whang, Taesun;Kim, Jungwook;Lee, Saebyeok
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.98-102
/
2020
의존 구문 분석은 입력된 문장 내의 어절 간의 의존 관계를 예측하기 위한 자연어처리 태스크이다. 최근에는 BERT와 같은 사전학습 모델기반의 의존 구문 분석 모델이 높은 성능을 보이고 있다. 본 논문에서는 추가적인 성능 개선을 위해 ALBERT, ELECTRA 언어 모델을 형태소 분석과 BPE를 적용해 학습한 후, 인코딩 과정에 사용하였다. 또한 의존소 어절과 지배소 어절의 특징을 specific하게 추상화 하기 위해 두 개의 트랜스포머 인코더 스택을 추가한 의존 구문 분석 모델을 제안한다. 실험결과 제안한 모델이 세종 코퍼스에 대해 UAS 94.77 LAS 94.06의 성능을 보였다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.79-80
/
2022
본 논문에서는 데이터 증강 기법 중 하나인 EDA를 적용하여 BERT 기반의 감성 분류 언어 모델을 만들고, 성능 개선 방법을 제안한다. EDA(Easy Data Augmentation) 기법은 테이터가 한정되어 있는 환경에서 SR(Synonym Replacement), RI(Random Insertion), RS(Random Swap), RD(Random Deletion) 총 4가지 세부 기법을 통해서 학습 데이터를 증강 시킬 수 있다. 이렇게 증강된 데이터를 학습 데이터로 이용해 구글의 BERT를 기본 모델로 한 전이학습을 진행하게 되면 감성 분류 모델을 생성해 낼 수 있다. 데이터 증강 기법 적용 후 전이 학습을 통해 생성한 감성 분류 모델의 성능을 증강 이전의 전이 학습 모델과 비교해 보면 정확도 측면에서 향상을 기대해 볼 수 있다.
Lee, Jeong-Rok;Lee, Dae-Woong;Jeong, Sae-Hyun;Jung, Sang
Proceedings of the Korean Society of Disaster Information Conference
/
2023.11a
/
pp.202-203
/
2023
최근 화재 탐지 분야는 불꽃 연기의 특징과 인공지능 인식(Detection) 모델을 활용하여 탐지율을 높이려는 연구가 많이 진행되어 왔다. 기존 화재 탐지 정확도를 높이기 위한 모델 연구 이외에도 불꽃·연기의 특징을 다양한 방법으로 데이터 가공한 학습 데이터셋을 활용하는 연구들이 진행되고 있다. 본 논문에서는 화재 탐지시 불꽃/연기의 오탐지율이 높은 것을 확인하고 오탐지율을 낮추기 위해 화재 상황을 인식하여 분류하는 방법과 데이터셋을 제안한다. 제안한 모델은 동영상을 학습데이터로 활용하여 화재 상황의 특징을 추출하여 분류모델에 적용하였다. 평가는 한국정보화진흥원(NIA)에서 진행하는 화재 데이터셋을 이용하여 Yolov8, Slowfast의 모델 성능을 비교 및 분석하였다.
본 실험 연구에서는 주의 메커니즘과 컨볼루션 신경망을 결합하여 모델을 개선하는 방법을 탐색하는 딥 러닝 기술을 소개한다. 이 기술은 지도 학습 방식을 위해 공개 데이터 세트의 쓰레기 분류 데이터를 사용하고, Grad-CAM 기술과 채널 주의 메커니즘 SE 를 적용하여 모델의 분류 의사 결정 과정을 더 잘 이해하기 위해 히트 맵을 생성한다. Grad-CAM 기술을 사용하여 히트 맵을 생성하면 분류 중에 모델이 집중하는 영역을 시각화할 수 있다. 이는 모델의 분류 결정을 설명하는 방법을 제공하여 다양한 이미지 카테고리에 대한 모델 결정의 기초를 더 잘 이해할 수 있다. 실험 결과는 전통적인 합성곱 신경망과 비교하여 제안한 방법이 쓰레기 분류 작업에서 더나은 성능을 달성한다는 것을 보여준다. 주의 메커니즘과 히트맵 해석을 결합함으로써 우리 모델은분류 정확도를 향상시킬 수 있다. 이는 실제 응용 분야의 이미지 분류 작업에 큰 의미가 있으며 해석 가능성에 대한 딥 러닝 연구 진행을 촉진하는 데 도움이 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.