References
- Samek W, Wiegand T, M Uller K R. Explainable artificial intelligence:Understanding, visualizing and interpreting deep learning models[J].arXiv preprint arXiv:1708.08296, 2017.
- Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
- Glorot X, Bengio Y. Understanding the difficulty of training deep feed-forward neural networks[C]//Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010: 249-256.
- Selvaraju R R, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE international conference on computer vision. 2017: 618-626.
- Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J].Advances in neural information processing systems, 2017, 30.
- Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of big data, 2019, 6(1): 1-48. https://doi.org/10.1186/s40537-018-0162-3
- He K, Zhang X, Ren S, et al. Deep residual learning for image recog- nition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
- Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
- Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps[J].arXiv preprint arXiv:1312.6034, 2013.