• Title/Summary/Keyword: 개선 모델

Search Result 6,513, Processing Time 0.035 seconds

DNN-based Audio Compression Model Optimization Utilizing Entropy Model (엔트로피 모델을 활용한 심층 신경망 기반 오디오 압축 모델 최적화)

  • Lim, Hyungseob;Kang, Hong-Goo;Jang, Inseon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.54-57
    • /
    • 2022
  • 본 논문에서는 심층 신경망 기반 점진적 다계층 오디오 코덱의 비트 전송률 효율 향상을 위한 엔트로피 모델 기반 양자화 방식을 제안한다. 최근 심층 신경망을 이용하여 전통적인 신호 처리 이론 기반의 상용 오디오 코덱들을 대체하기 위한 오디오 압축 및 복원 시스템에 관한 연구가 활발하게 이루어지고 있다. 그러나 아직은 기존 상용 코덱의 성능에 도달하지 못하고 있으며 특히 종단 간 오디오 압축 모델의 경우, 적은 정보량으로 높은 품질을 얻기 위해서는 부호화기의 양자화 구조를 개선하는 것이 필수적이다. 본 연구에서는 기존에 제안된 종단 간 오디오 압축 모델 중 하나인 점진적 다계층 오디오 코덱의 벡터 양자화기를 엔트로피 모델 기반 양자화기로 대체하고 전송률-왜곡 트레이드오프 관계를 활용하여 전송률을 다양한 형태로 조절할 수 있음을 보임으로써 엔트로피 모델 기반 양자화기 도입의 타당성을 검증한다.

  • PDF

Analysis of utterance intent classification of cutomer in the food industry using Pretrained Model (사전학습 모델을 이용한 음식업종 고객 발화 의도 분류 분석)

  • Kim, Jun Hoe;Lim, HeuiSeok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.43-44
    • /
    • 2022
  • 기존 자연어 처리 모델은 문맥 단위 단어 임베딩을 처리하지 못하는 한계점을 가지고 있는 한편 최근 BERT 기반 사전학습 모델들은 문장 단위 임베딩이 가능하고 사전학습을 통해 학습 효율이 비약적으로 개선되었다는 특징이 있다. 본 논문에서는 사전학습 언어 모델들을 이용하여 음식점, 배달전문점 등 음식 업종에서 발생한 고객 발화 의도를 분류하고 모델별 성능을 비교하여 최적의 모델을 제안하고자 한다. 연구결과, 사전학습 모델의 한국어 코퍼스와 Vocab 사이즈가 클수록 고객의 발화 의도를 잘 예측하였다. 한편, 본 연구에서 발화자의 의도를 크게 문의와 요청으로 구분하여 진행하였는데, 문의와 요청의 큰 차이점인 '물음표'를 제거한 후 성능을 비교해본 결과, 물음표가 존재할 때 발화자 의도 예측에 좋은 성능을 보였다. 이를 통해 음식 업종에서 발화자의 의도를 예측하는 시스템을 개발하고 챗봇 시스템 등에 활용한다면, 발화자의 의도에 적합한 서비스를 정확하게 적시에 제공할 수 있을 것으로 기대한다.

  • PDF

A Study on the Improvement of Battle Pass Business Model in Games (게임에서의 배틀패스 비즈니스 모델 개선에 관한 연구)

  • Choi, Kyu-hyun;Kim, Hyo-Nam
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.163-166
    • /
    • 2021
  • 현재 게임 비즈니스 모델의 흐름은 패키지에서 정액제, 정액제에서 부분유료화, 부분유료화에서 배틀패스로 변화하고 있다. 본 논문에서는 장르, 플랫폼 상관없이 배틀패스 비즈니스 모델을 채택하는 게임이 늘어가고 있는 추세에 배틀패스는 무엇이며 타 비즈니스 모델과는 달리 어떤 특징이 존재하기에 현재 비즈니스 모델의 변화를 주도하는지에 대해 설명한다. 또한 배틀패스 비즈니스 모델의 단점과 앞으로 우려되는 문제점을 설명함과 동시에 이에 따른 해결 방안을 제시한다.

  • PDF

Prediction of Movies Box-Office Success Using Machine Learning Approaches (머신 러닝 기법을 활용한 박스오피스 관람객 예측)

  • Park, Do-kyoon;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.15-18
    • /
    • 2020
  • 특정 영화의 스크린 독과점이 꾸준히 논란이 되고 있다. 본 논문에서는 영화 스크린 분배의 불평등성을 지적하고 이에 대한 개선을 요구할 근거로 머신러닝 기법을 활용한 영화 관람객 예측 모델을 제안한다. 이에 따라 KOBIS, 네이버 영화, 트위터, 구글 트렌드에서 수집한 3,143개의 영화 데이터를 이용하여 랜덤포레스트와 그라디언트 부스팅 기법을 활용한 영화 관람객 예측 모델을 구현하였다. 모델 평가 결과, 그라디언트 부스팅 모델의 RMSE는 600,486, 랜덤포레스트 모델의 RMSE는 518,989로 랜덤포레스트 모델의 예측력이 더 높았다. 예측력이 높았던 랜덤포레스트 모델을 활용, 상영관을 크게 확보하지 못 했던 봉준호 감독의 영화 '옥자'의 상영관 수를 조절하여 관람객 수를 예측, 6,345,011명이라는 결과를 제시한다.

  • PDF

딥러닝을 활용한 선박가치평가 모델 개발

  • Choi, Jung-suk;Kim, Donggyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.108-110
    • /
    • 2020
  • 본 연구의 목적은 딥러닝 기법의 하나인 인공신경망 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 선박의 가치는 해운시장 변화와 밀접한 관계가 있으며, 경기 변동성이 크고 시장 민감성이 높은 해운시장의 특성상 가치의 불확실성 역시 높게 나타나고 있다. 이러한 선박가치의 중요성에도 불구하고 국내외적으로 선박가치평가의 체계 개선 및 평가모델의 객관성과 신뢰성을 제고시키기 위한 연구는 부족한 실정이다. 따라서 본 연구에서는 딥러닝 방법을 통해 선박의 가치를 산출하는 새로운 평가모델을 제시하고자 한다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고 2010년 1월부터 현재까지의 해당 데이터를 확보하였다. 교차검증을 통해 파라미터들을 추정하여 인공신경망의 최적 구조를 식별하고 이에 대한 객관성과 신뢰성을 검증한 결과 인공신경망 모델의 가치평가 정확성이 우수함을 확인하였다. 본 연구는 선박가치평가의 전통적 방법론에서 탈피하여 기계학습 기반의 딥러닝 모델을 활용한 측면에서 독창적인 의미가 있다.

  • PDF

Object detection model conversion and weight reduction for efficient operation in embedded environment (임베디드 환경에서 효율적인 동작을 위한 객체검출 모델 변환 및 경량화)

  • Choi, In-Kyu;Song, Hyuk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.244-245
    • /
    • 2022
  • 최근에는 우수한 성능의 딥러닝 기술을 활용한 장비와 프로그램이 개발되고 있으나 기술의 특성상 모든 환경에서 우수한 성능을 보여주지 못하고 고 사양의 서버와 같은 환경에서의 성능만을 보장하고 있다. 따라서 이에 대한 개선으로 엣지 디바이스 독립적으로 혹은 클라우드 의존과 인터넷 연결을 최소화 할 수 있는 엣지 컴퓨팅 기술이 제안되고 있으며 경량 내장형 시스템에 적합한 인공지능 기술의 개발이 필요하다. 본 논문에서는 객체검출 모델을 적은 연산과 효율적인 구조로 설계하고 생성된 모델을 임베디드 보드에서 원활하게 실행할 수 있도록 중립 모델로 변환하고 경량화 하는 방법에 대해 소개한다. Qualcomm snapdragon 프로세서가 갖춰진 임베디드 보드를 목표로 하였고 편의를 위해 SNPE(snapdragon neural processing engine) SDK를 이용하여 실험을 진행하였다. 실험 결과 변환된 중립모델이 기존 모델과 비교하여 압축된 모델 크기 대비 미미한 성능 저하가 발생함을 확인할 수 있었다.

  • PDF

Korean QA with Retrieval Augmented LLM (검색 증강 LLM을 통한 한국어 질의응답)

  • Mintaek Seo;Seung-Hoon Na;Joon-Ho Lim;Tae-Hyeong Kim;Hwi-Jung Ryu;Du-Seong Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.690-693
    • /
    • 2023
  • 언어 모델의 파라미터 수의 지속적인 증가로 100B 단위의 거대 언어모델 LLM(Large Language Model)을 구성 할 정도로 언어 모델의 크기는 증가 해 왔다. 이런 모델의 크기와 함께 성장한 다양한 Task의 작업 성능의 향상과 함께, 발전에는 환각(Hallucination) 및 윤리적 문제도 함께 떠오르고 있다. 이러한 문제 중 특히 환각 문제는 모델이 존재하지도 않는 정보를 실제 정보마냥 생성한다. 이러한 잘못된 정보 생성은 훌륭한 성능의 LLM에 신뢰성 문제를 야기한다. 환각 문제는 정보 검색을 통하여 입력 혹은 내부 표상을 증강하면 증상이 완화 되고 추가적으로 성능이 향상된다. 본 논문에서는 한국어 질의 응답에서 검색 증강을 통하여 모델의 개선점을 확인한다.

  • PDF

Research on apply to Knowledge Distillation for Crowd Counting Model Lightweight (Crowd Counting 경량화를 위한 Knowledge Distillation 적용 연구)

  • Yeon-Joo Hong;Hye-Ryung Jeon;Yu-Yeon Kim;Hyun-Woo Kang;Min-Gyun Park;Kyung-June Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.918-919
    • /
    • 2023
  • 딥러닝 기술이 발전함에 따라 모델의 복잡성 역시 증가하고 있다. 본 연구에서는 모델 경량화를 위해 Knowledge Distillation 기법을 Crowd Counting Model에 적용했다. M-SFANet을 Teacher 모델로, 파라미터수가 적은 MCNN 모델을 Student 모델로 채택해 Knowledge Distillation을 적용한 결과, 기존의 MCNN 모델보다 성능을 향상했다. 이는 정확도와 메모리 효율성 측면에서 많은 개선을 이루어 컴퓨팅 리소스가 부족한 기기에서도 본 모델을 실행할 수 있어 많은 활용이 가능할 것이다.

침입탐지율 향상을 위한 네트웍 서비스별 클러스터링(clustering)

  • 류희재;예홍진
    • Review of KIISC
    • /
    • v.13 no.1
    • /
    • pp.68-76
    • /
    • 2003
  • 네트웍 기반의 컴퓨터 보안이 컴퓨터 보안분야의 중요한 문제점으로 인식이 된 이래 네트웍 기반의 침입탐지 방법 중 클러스터링(Clustering)을 이용한 비정상 탐지기법(Anomaly detection)을 사용하는 시도들이 있었다. 네트웍 데이터 같은 대량의 데이터의 처리에 클러스터링을 통한 방법이 효과적인 결과를 나타내었음이 다수의 논문에서 제기되어왔으나 이 모델에서의 클러스터링 방법은 네트웍 정보로부터 추출한 정보들을 정상적인 클러스터들과 그렇지 않은 클러스터들 크게 두 집단으로 나누는 방법을 택했었는데 침입탐지율에서 만족할만한 결과를 얻지 못했었다. 본 논문에서 제안하고자 하는 모델에서는 이를 좀 더 세분화하여 네트웍 서비스(Network service)별로 정상적인 클러스터들과 그렇지 않은 클러스터들을 가지게되는 방법을 적용하여 기존 모델에서의 침입탐지율 결과의 개선을 도모해 보고자한다.

Applicable Profile Model for UML-based Modeling Tool (UML 기반 설계도구에서의 프로파일 지원을 위한 모델)

  • 김정일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.313-315
    • /
    • 2004
  • UML은 범용의 목적으로 설계된 모델링 언어이지만 않은 도메인 영역에서 사용되고 있다. 그것은 UML을 각 도메인의 특성에 맞게 확장할 수 있는 프로파일이라는 메커니즘을 자체적으로 보유하고 있기 때문이다. UML 표준 명세에 기술되어 있는 확장 메커니즘과 프로파일은 그 자체로 매우 잘 설계된 모델이나 그대로 설계 도구에 도입하기에는 부적합한 면이 않다. 본 논문에서는 UML 기반의 설계 도구에서 프로파일을 수용할 수 있도록 확장 메커니즘 모델을 개선하고 프로파일을 정의할 수 있는 정형적인 방법들을 제시한다.

  • PDF