본 연구는 국가측정망(에어코리아)에서 제공하는 2017년, 2019년 및 2020년도 대기질확정 데이터를 이용하여 Deep Neural Network(DNN) 모델을 학습하고, 2016년과 2018년도 데이터를 이용하여 학습된 모델을 평가·검증하였다. 피어슨 상관계수 0.2를 기준으로 SO2, CO, NO2, PM10 항목을 독립변수로 하여 초기 모델링을 진행하였고, 예측의 정확도를 높이기 위한 방법으로 시계열적 요소를 반영한 월별 모델링(개선모델)을 진행하여 초기모델과 비교·분석하였다. 분석에 사용한 지표는 RMSE(Root mean square error) 방법으로 오차를 계산하였으며, 예측 결과 초기모델의 RMSE값은 5.78로 국가측정망의 예측이동 평균모델의 결과(10.77)와 비교하여 초기모델에서 약 46% 오차가 감소하였다. 또한, 개선모델의 경우, 초기모델 대비 11월 모델을 제외한 모든 월별모델에서 정확도 향상이 있었다. 따라서, 본 연구에서는 DNN 모델링이 PM2.5 농도 예측에 효과적인 방법임을 제안할 수 있었으며, 향후 추가적인 독립변수 선정 및 시계열 요소를 고려한 방법으로 모델의 정확도 개선 가능성을 확인할 수 있었다.
일반적으로 PDA, 모바일 폰 카메라, PC 카메라 등으로 촬영된 영상은 촬영 장비의 생동 폭의 한계로 인해 낮은 영상 대비를 갖는 영상들이 획득된다. 이러한 이유로 영상 개선 방법은 여러 가지의 영상 촬영 장비를 이용해 촬영된 영상들의 개선을 위해 필요하다. 영상 개선을 위한 몇 가지의 방법들이 제안되었으나, 후광효과(halo-artifact), 회색계의 왜곡(graying-out), 칼라 잡음(color noise) 등의 영상 왜곡이 발생한다. 이러한 문제를 해결하기 위해, 본 논문은 레티넥스 기반 영상 향상 방법을 제안하며, 회색계의 왜곡을 줄이기 위해 HSV 칼라 좌표계를 사용하며, 후광효과를 줄이기 위해 영상을 전역조명성분, 국부조명성분, 반사성분으로 나누는 개선된 영상 생성모델을 적용한다. 실험 결과는 제안한 방법이 다른 방법들 보다 성능이 우수함을 보여준다.
우리는 일상에서 유체와 강체 사이에서 일어나는 상호작용을 흔히 볼 수 있다. 하지만 이를 시뮬레이션하는 것은 많은 계산량이 필요한 어려운 작업이다. 본 논문에서는 유체와 강체 사이의 상호작용 현상 중 하나인 물수제비 현상을 실시간으로 시뮬레이션 할 수 있는 역학적 모델을 제안한다. 이를 위해 실시간에 계산 가능하면서도 이전 연구에서 고려하지 않았던 돌멩이의 회전운동을 포함하는 개선된 역학적 모델을 사용하며 공기와의 마찰로 생기는 힘들도 포함한 수식을 제안한다. 제안하는 모델을 사용하면 사용자의 다양한 입력에 대해 사실적인 물수제비 현상을 시뮬레이션 할 수 있다. 또한 이전 결과에 비해 보다 원에 가까운 파장을 만들면서 실시간 처리가 가능한 수면 모델도 제시한다. 본 논문에서 제안하는 방법은 상호작용 역학 시스템이나 게임 엔진들에 쉽게 적용할 수 있다.
기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.
본 논문에서는 기존의 CNN 기반 얼굴 감정 분석 모델에 랜드마크 정보를 특징 벡터로 추가하여 새로운 모델을 제안한다. CNN 기반 모델을 이용한 얼굴 감정 분류 연구는 다양한 방법으로 연구되고 있으나 인식률이 매우 저조한 편이다. 본 논문에서는 CNN 기반 모델의 성능을 향상시키기 위하여 CNN 모델에 ASM으로 구한 랜드마크 기반 완전 연결 네트워크를 결합함으로써 얼굴 표정 분류 정확도를 향상시키는 알고리즘을 제안한다. CNN 모델에 랜드마크를 포함시킴으로써 인식률이 VGG 0.9%, Inception 0.7% 개선되었으며, 랜드마크에 FACS 기반 액션 유닛 추가를 통하여 보다 VGG 0.5%, Inception 0.1%만큼 향상된 결과를 얻을 수 있음을 실험으로 확인하였다.
최근 지능형 스마트 디바이스의 눈부신 발전과 사용으로 개발 단계의 소프트웨어 결함 관리의 중요성이 부각되고 있다. 효과적 결함 관리를 위해 소프트웨어 메트릭을 토대로 많은 결함 예측 모델 연구가 수행되고 있지만, 결함 예측 모델 연구 성과가 널리 확산되지는 못하고 있다. 본 논문에서는 결함 존재 유무에 관한 이진적 결함 예측 모델의 제약을 극복할 수 있도록, 베이지안 네트워크 기반 확률적 소프트웨어 메트릭 관리 방법을 제안한다. 제안 모델은 소프트웨어 메트릭을 활용하여 베이지안 네트워크를 구성하고, 이를 토대로 베이지안 추론을 수행하여 리팩토링을 위한 개선점을 식별할 수 있는 모델이다. 코드 리팩토링을 통해 소스 코드가 개선되면 관련 메트릭 측정값 또한 변하게 된다. 제안 모델은 리팩토링을 통한 메트릭의 개선으로 얻을 수 있는 결함 제거 효과를 확률 값으로 제시해준다. 따라서 이진 값 형태의 확정성을 극복할 수 있으며, 불확정적인 확률 값으로 의사결정의 유연성을 확보할 수 있을 것이다.
댐 저수지에서 지속적인 탁도를 유발하는 물질은 쉽게 침강되지 않는 $20{\mu}m$이하의 작은 부유물질(SS)이며, 가을 수직혼합 시기까지 침강되지 않은 부유물질은 다시 재부상하는 경우도 발생한다. 저수지내 탁수의 장기 체류는 수자원 이용과 하류하천의 수생태계에 다양한 문제를 야기하고 있어 일부 댐에서는 실시간 탁도 감시 장치를 설치하고 취수설비를 개선하는 등의 탁수저감 대책의 노력을 기울이고 있으나, 시설의 최적 운영을 지원할 수 있는 탁수 거동 및 탁도 예측에 관한 연구는 아직 부족한 실정이다. 특히, 탁도는 물 속에 존재하는 부유물질의 광학적 특성(light attenuation)을 나타내는 지표로써 SS와는 물리적인 물성이 달라 실시간 계측자료(탁도)와 모델의 모의 변수(SS)가 다른 문제점 때문에 모델링에 어려움이 있었다. 지금까지 탁도 모델링은 대부분 탁도와 SS의 상관관계를 이용하는 방법을 사용하였다. 그러나 이 방법은 탁도-SS 관계가 실측지점과 입자크기분포에 따라 달라지는 특성 때문에 변환과정에 예측결과의 불확실성이 내재한다는 지적을 받아왔다. 본 연구의 목적은 저수지로 유입한 탁수의 보다 과학적이고 정확한 탁도 예측을 위해 탁도를 유발하는 부유물질의 입자크기 분포와 공간적으로 변하는 탁도-SS의 상관관계를 고려할 수 있는 표준화된 탁도 모델링 방법을 개발하고, 실측자료를 사용하여 제시된 탁도 모델링 방법의 예측 성능을 평가하는데 있다. 부유물질의 이송-확산-침강 모델은 2차원 횡방향 평균 수리 모델과 연결(coupling)되어 수행되며, 저수지 수면을 통한 열 교환, 바람과 바닥 조도에 의한 난류혼합과 성층해석, 하천 유입수의 저수지내 밀도류 유동, 그리고 입자 크기별 부유물질의 독립침강을 해석한다. 부유입자의 크기분포와 공간적으로 서로 다른 탁도-SS 관계를 고려한 탁도 예측모델은 기존의 탁도를 종속변수로 사용한 예측 방법 또는 단일 입자크기를 사용한 모델보다 개선된 모의결과를 보여주었다. 본 연구에서 제시된 탁도 예측 알고리즘은 실시간 탁수감시와 예측 모델링, 그리고 댐 방류수 탁도 관리를 위한 선택취수 설비의 운영을 위한 의사결정지원시스템에 적용 가능할 것으로 사료된다.
Geant4 전산모사 toolkit은 버전에 따라 개선되거나 새로워진 물리적 모델을 제공한다. 최근 재 코드화 된 Geant4.9.3은 저 에너지 전자기 물리 모델에 대해 Livermore 데이터 삽입과 새로운 물리적 모델을 적용시키고, 코드를 수정하여 물리적 요소를 개선시켰다. 본 연구에서는 향후, 전자 또는 입자를 이용한 신뢰성 있는 전산모사를 위하여 Geant4.9.2와 9.3에 포함된 전자기 물리모델을 이용하여 물질 내부를 통과하는 입자의 저지능(Stopping power)과 CSDA(Continuously Slowing Down Approximation) range 데이터를 획득하였으며, 이 결과를 미국국립기술표준원(National Institute of Standards and Technology, NIST)에서 제공하는 각각의 데이터와 비교하여, Geant4.9.2에 대한 Geant4.9.3의 저 에너지 전자기 물리 모델의 개선 여부를 알아보고자 하였다.
최근 의료서비스 환경에서 진료정보 교류는 의료의 안정성 및 질 증대, 진료업무 효율성 향상, 의료기관 운영 효율성, 환자의 편의성 증대를 가져올 수 있는 필수 의료 서비스 모델이다. 하지만 의료기관별 정보화 수준이 다양하고, 표준화된 시스템이 마련되어 있지 않으며, 기관별로 서로 상이한 정보시스템이 구축되어 있어 실질적인 진료정보 교류가 어려운 상황이다. 이 논문에서는 국내 법제도 안에서 진료정보 교류를 활성화 하기위해 관련 기술표준 및 진료정보 교류 모델에 대해 분석하였고 이중 가장 이상적인 지연 응답 모델을 기반으로 보다 나은 성능 개선을 위하여 진료정보 교류 프레임워크를 설계하였다. 성능 개선 진료정보 교류 프레임워크는 진료정보 교류 시 메타데이터 플로우와 실제 CDA 문서 플로우를 구분하여 기존 지연 응답 모델 기반 시스템과의 성능 비교 실험 결과 약 24%의 성능 향상을 얻었다.
웹 추천기법에서 가장 많이 사용하는 방식 중의 하나는 협업필터링 기법이다. 협업필터링 관련 많은 연구에서 정확도를 개선하기 위한 방안이 제시되어 왔다. 본 연구는 Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 방안에 대해 제안한다. 먼저 사용자, 영화, 평점 정보에서 사용자 문장과 영화 문장을 구성한다. 사용자 문장과 영화 문장을 Word2Vec에 입력으로 넣어 사용자 벡터와 영화 벡터를 구한다. 사용자 벡터는 사용자 합성곱 모델에 입력하고, 영화 벡터는 영화 합성곱 모델에 입력한다. 사용자 합성곱 모델과 영화 합성곱 모델은 완전연결 신경망 모델로 연결된다. 최종적으로 완전연결 신경망의 출력 계층은 사용자 영화 평점의 예측값을 출력한다. 실험결과 전통적인 협업필터링 기법과 유사 연구에서 제안한 Word2Vec과 심층 신경망을 사용한 기법에 비해 본 연구의 제안기법이 정확도를 개선함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.