• 제목/요약/키워드: 개별 문자

Search Result 116, Processing Time 0.029 seconds

조응구조의 지시사상 (mapping) 이론

  • Park, Yeong-Gyu
    • Annual Conference on Human and Language Technology
    • /
    • 1990.11a
    • /
    • pp.199-199
    • /
    • 1990
  • 입력된 문서 영상으로부터 분리 추출된 문자 영상을 올바르게 인식하는 것은 문서 인식에서 가장 핵심적인 부분이다. 스캐너를 통해 입력되고 분리된 실제의 문자 영상은 많은 문제점들을 가지고 있다. 한글의 경우 이 중 개별 문자 영상내의 각 자소간의 접촉은 올바른 인식을 저해하는 주요한 원인이다. 이런 접촉의 문제를 효율적으로 해결하기 위해 한글의 구조적 특성을 지닌 "방향 필터"를 정의하고, 이것을 이용하여 세선화된 문자 영상을 추적하면서 선소들을 뽑아낸다. 이렇게 하여 얻은 선소들과 선소들간의 지식을 조합하여 한글자소 획을 추출케 되고 결국에는 이런 획의 조합을 통해 문자 영상을 인식하는 방법을 제안한다.

  • PDF

Image Preprocessing in Container Identifier Recognition System Using Multiple Threshold Regions (컨테이너 식별자 영상 인식 시스템에서 다중 임계영역을 이용한 영상 전처리)

  • Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.549-557
    • /
    • 2013
  • This paper proposes a method using the multiple threshold regions in the image preprocessing procedure for container identifier recognition system. The multiple threshold regions are set by considering the container image characteristics and used as the candidates for the final one, The image is transformed to black and white images using these threshold regions, then labeling, panelling and panels merging are executed for each candidate, respectively. Finally the best threshold region is selected through this procedure and the character region can be extracted. Applying the similar method the noises are removed and the characters of identifier are segmented from the extracted region. In the experiments with 162 different images the success rates for extracting of the character region and segmenting the characters are 99.04% and 98.09%, respectively.

A Recognition of the Printed Alphabet by Using Nonogram Puzzle (노노그램 퍼즐을 이용한 인쇄체 영문자 인식)

  • Sohn, Young-Sun;Kim, Bo-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.451-455
    • /
    • 2008
  • In this paper we embody a system that recognizes the printed alphabet of two font types (Batang, Dodum) inputted by a black-and-white CCD camera and converts it into an editable text form. The image of the inputted printed sentences is binarized, then the rows of each sentence are separated through the vertical projection using the Histogram method, and the height of the characters are normalized to 48 pixels. With the reverse application of the basic principle of the Nonogram puzzle to the individual normalized character, the character is covered with the pixel-based squares, representing the characteristics of the character as the numerical information of the Nonogram puzzle in order to recognize the character through the comparison with the standard pattern information. The test of 2609 characters of font type Batang and 1475 characters of font type Dodum yielded a 100% recognition rate.

A Study on Preprocessing for Efficient Character Recognization of Shipping Container Image (운송 컨테이너 영상의 효율적인 문자인식을 위한 전처리에 관한 연구)

  • Choi, Jae-Young;Kim, Nak-Bin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.04a
    • /
    • pp.1077-1083
    • /
    • 2000
  • 본 논문은 운송 컨테이너 식별자의 자동화 처리를 위한 문자 인식의 단계중 최종 문자 인식 전단계 까지의 처리 과정을 컨테이너의 특성에 맞게 제안하였으며, 이러한 전처리 과정은 문자 인식 시스템의 성능에 중요한 영향을 미친다. 제안한 방법은 먼저 입력된 컨테이너 컬러 영상을 명암 영상으로 바꾸고 전체 영상중 인식에 필요한 식별자 영역만을 경계선 검출과 형태학적 연산을 이용하여 추출한다. 이어서 다양한 배경색과 문자색을 판단하여 일반 문서와 같이 일관성있게 통일한 후, DCT를 이용한 명암도별 이진영역으로 분할한 후에 Otsu방법과 새로운 이진화방법을 자동으로 선택하여 효율적인 이진화가 이루어지도록 하였다. 이렇게 얻어진 이진 영상은 문자인식 단계로 넘어갈 수 있도록 개별 문자로 분할한다. 이 방법은 컨테이너 영상의 불균등한 배경색과 잡음으로 인하여 문자인식에 오류가 생기는 단점을 보완하였으며 컨테이너 특성을 최대한 반영함으로써 효과적인 전처리 결과를 얻을 수 있었다. 또한, 제안한 방법의 응용은 컨테이너 이외의 다른 상황에서도 매우 효과적으로 사용될 수 있으리라 본다.

  • PDF

The Passport Recognition by Using Smearing Method and Fuzzy ART Algorithm (스미어링 기법과 퍼지 ART 알고리즘을 이용한 여권 인식)

  • 류재욱;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.37-42
    • /
    • 2002
  • 현행 출입국 관리는 사용자가 여권을 제시하면, 여권을 육안으로 검색하고 수작업으로 정보를 입력하여 여권의 데이터 베이스와 대조하였다. 이러한 종래의 출입국 관리 시스템은 출입국 심사 시간이 길어 출입국자에 불편을 제공하고 출입국 부적격자에 대한 정확한 검색이 이루어지지 않아 체계적으로 관리하기가 어려웠다. 이리한 종래의 문제점을 개선하기 위해 영상 처리와 문자 인식을 이용한 여권 인증 시스템을 제안한다. 된 논문에서는 여권 영상에 대해 소벨 연산자와 스미어링 기법 그리고 윤곽선 추적 알고리즘을 이용하여 사진영역, 코드 영역 및 개별 코드 문자를 추출하고 개별 코드 문자 인식은 기존의 퍼지 ART를 개선하여 적용한다. 다양한 국내 여권 영상에 대해 제안된 여권 인식 방법을 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능을 보였고 개선된 퍼지 ART 알고리즘이 기존의 퍼지 ART 알고리즘보다 클러스터 수가 적게 생성되고 인식률도 향상된 것을 확인하였다

  • PDF

ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식

  • ;Lee, Jae-Eon;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.526-535
    • /
    • 2005
  • 우리나라의 주민등록증은 주소지, 주민등록 변호, 얼굴사진, 지문 등 개개인의 방대한 정보를 가진다. 현재의 플라스틱 주민등록증은 위조 및 변조가 쉽고 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 많은 문제를 일으키고 있다. 이에 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2 기반 RBF 네트워크와 얼굴인증을 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 영상을 소벨마스크와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 검출한다. 그리고 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출하기 위한 전 단계로 주민등록증 영상에 대해 고주파 필터링을 적용하여 주민등록증 영상 전체를 이진화 한다. 이진화된 주민등록영상에서 COM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원하고 검출된 각 영역에 대해 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 문자는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간충과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증애서 추출된 얼굴영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다.

  • PDF

Character Grouping using 3-D Neighborhood Graph on Raster Map (래스터 지도상에서 3차원 인접 그래프를 이용한 문자 그룹핑)

  • Gang, Yong-Bin;Ok, Se-Yeong;Jo, Hwan-Gyu
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.2
    • /
    • pp.273-283
    • /
    • 1999
  • 래스터 지도에서 직선 또는 곡선과 중첩되어 있는 경우의 문자는 추출하기가 쉽지 않다. 따라서 본 논문에서는 고립되어 있는 문자뿐만 아니라 문자이외의 요소와 중첩되어 있는 문자도 효과적으로 추출할수 있는 분할 정복(divide and conquer) 개념에 기반한 문자 추출방법을 제시한다. 이를 위해 먼저 이미지의 연결 요소로부터 볼록다각형(convex hull)을 생성한다. 그리고 이 다각형이 충분한게 문자영역만을 포함할때가지 볼록 다각형을 이등분하면서 가장 긴 선분(투사 선분)을 기준으로 두 영역으로 분할한다. 다음으로 문자를 추출하기 위해서 이 선분을 기준으로 연결 요소상의 픽셀의 밀집도를 계산하는 알고리즘(프로파일링)을 적용한다. 또한 지도상에서 추출된 개별적인 문자들을 의미있는 단어들로 묶기(grouping)한 새로운 알고리즘을 소개한다. 특히 지도상에 나타나는 문자의 종류는 매우 다양하고 또한 이 문자들이 놓여있는 방향 역시 일정하지 않기 때문에 이러한 단어를 찾는 kd법은 쉽지 않다. 이를 위해 본 논문에서는 3차원 인접 그래프(3-D neighborhood graph)G를 소개한다. 이 그래프 G에서 각 노드는 하나의 분리된 문자를 나타내며 자신의 크기와 위치에 따라서 3차원 공간상에서 위치하게된다. 따라서, 크기가 큰 (작은)문자들은 보다 큰 (작은) z값을 가지고 되며 이 그래프 G에서 서로 인접한 노드들을 연결함으로써 지도상에 존재하는 서로 다른 종류의 문자 스트링을 추출할수 있다. 실험결과는 서로 다른 지도 이미지에 대해서 약 95% 이상의 단어 추출율을 보여준다.

Character Recognition of Vehicle Number Plate Using Feature Based Neural Network (특징 추출에 기반한 신경망 시스템을 이용한 차량 번호판 문자인식)

  • 이현숙;김희승
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.383-385
    • /
    • 2000
  • 차량 번호판 문자영상으로부터 여러 가지 특징 추출 방법을 조합하여 입력특징소를 재구성하고, 신경망을 이용하여 문자를 인식한다. 속도 개선을 위해 특별한 전처리 과정없이 이치화와 크기 정규화만을 수행한 후 그물망 방법과 BLT 방법, 정규화된 투영값 특정 방법을 조합하여 입력특징소를 구성한다. 본 연구에서는 숫자 인식에서 그물망 방법과 BLT 방법을 이용하여 잡음으로 인한 유사 문자의 오인식을 해결하였고, 문자 인식에서는 정규화된 투영값 특징을 이용하여 문자의 유형을 분류한 후 자소를 개별적으로 인식하였다. 이로써 모음 인식 경우에 중요한 역할을 하는 작은 획의 영역에 BLT 방법을 사용함으로 기존 연구에서의 모음 오인식 문제를 해결하였다.

  • PDF

Difference State Number of CHMM Model to Improve the Performance of SCCRS (한국어 음성/문자 공용인식기의 성능향상을 위한 가변 상태수 CHMM모델의 구성)

  • Suk Soo-Young;Kim Min-Jung;Kim Kwang-Soo;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.95-98
    • /
    • 2002
  • 문자인식 또는 음성인식을 위해 사용되어지는 CHMM(Continuous Hidden Markov Model)모델은 일반적으로 모델의 상태수를 일정한 수로 고정하는 고정 상태수 모델 구조를 가지고 있으나, 이는 개별적인 인식 단위의 특성을 고려하지 않은 경우로써 이를 고려한 가변 상태수 모델을 사용할 경우 인식률 향상을 기대할 수 있다. 개별적인 인식 단위에 적합한 모델 상태수를 결정하는 방법으로 파라미터 히스토그램 방법과, BIC(Bayesian Information Criterion)방법을 사용하는 것이 대표적이다. 이들 방법들은 개별적인 인식단위의 우도값만을 향상시키기 위한 방법으로 전체인식률과 직접적으로 비례하지는 않는다. 따라서, 본 논문에서는 고정 상태수를 갖는 모델 적용 방법과 인식단위별 상태수 변화에 따른 인식률을 비교하였으며, 이를 바탕으로 각 모델별 상태수를 달리하는 가변 상태수 CHMM모델 구성 방법을 제안한다. 제안된 가변상태수 모델의 유효성을 확인하기 위해 음성/문자 공용인식기 중 필기체 문자 인식에 적용한 결과 제안한 LM(Local Maximum)으로 구성된 가변 상태수 모델이 MLE와 BIC로 구성된 모델과 인식률 면에서는 거의 동일한 성능을 유지하면서 전체 상태수는 MLE 모델에 비해 $31\%$, BIC로 구성된 모델에 비해 $22\%$ 감소를 나타내어 제안한 모델의 유효성을 확인할 수 있었다.

  • PDF

A Study of plate Number Extraction and Segmentation using domain Knowledge (사전 정보를 이용한 자동차 번호판의 문자 위치 추출과 세그멘테이션에 관한 연구)

  • 김병훈;고미애;김영모
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.259-261
    • /
    • 2003
  • 차량 번호판 인식 시스템의 번호판 인식과정은 영상획득 및 번호판 영역 추출, 개별문자 추출, 문자 인식의 3가지 핵심부분으로 구성된다. 이 중에서도 번호판 추출의 정확성은 시스템 전체의 결과에 영향을 줄 수 있는 부분이며 다양한 주변 환경에도 정확한 추출과 빠른 수행 시간을 요구한다. 본 논문에서는 검출 시간의 단축을 위하여 명암값의 차이와 사전정보를 이용하여 먼저 인식대상의 주목표인 등록번호의 위치를 추출 및 검증하고 등록번호에 대한 지역명의 상대적인 위치 정보를 이용하여 문자의 대략적인 위치를 선정, 각 요소들의 외곽 근접 선들의 투영(protection)과 이동을 통하여 번호판의 모든 문자 요소의 위치를 추출한다.

  • PDF