• 제목/요약/키워드: 개미 집단 시스템

검색결과 27건 처리시간 0.018초

개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과 (The Effect of Multiagent Interaction Strategy on the Performance of Ant Model)

  • 이승관
    • 한국콘텐츠학회논문지
    • /
    • 제5권3호
    • /
    • pp.193-199
    • /
    • 2005
  • 휴리스틱 알고리즘 연구에 있어서 중요한 분야 중 하나가 강화와 다양화의 조화를 맞추는 문제이다. 개미 집단 시스템은 최근에 제안된 조합 최적화문제를 해결하기 위한 메타 휴리스틱 기법으로, 그리디 탐색과 긍정적 보상에 의한 접근법으로 순회 판매원 문제를 풀기 위해 처음으로 제안되었다. 본 논문에서는 기존 개미집단 시스템의 성능을 향상시키기 위해 강화 전략과 다양화 전략으로 나누어진 엘리트 전략을 통해 집단간 긍정적 부정적 상호작용을 수행하는 다중 집단 개미 모델을 제안한다. 그리고, 이 제안된 엘리트 전략에 의한 다중 집단 상호작용 개미 모델을 순회판매원문제에 적용해 보고 그 성능에 대해 기존 개미집단 시스템과 비교한다.

  • PDF

집단간 긍정적.부정적 상호작용을 이용한 다중 집단 개미 모델 (Multi Colony Ant Model using Positive.Negative Interaction between Colonies)

  • 이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.751-756
    • /
    • 2003
  • 개미 집단 최적화는 최근에 제안된 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법으로, 그리디 탐색뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 순회 판매원 문제를 풀기 위해 처음으로 제안되었다. 본 논문에서는 기존의 개미 집단 시스템의 성능을 향상시키기 위해 강화와 다양화를 통한 집단간 긍정적 상호작용과 부정적 상호작용을 수행하는 다중 집단 개미 모델을 제안한다. 이 알고리즘은 TSP 문제를 해결하기 위해 몇 개의 에이전트 집단으로 이루어진 ACS 집단간의 상호작용을 통해 문제를 해결하는 방법이다. 본 논문에서는 이 제안된 방법을 TSP 문제에 적용해 보고 그 성능에 대해 기존의 ACS 방법과 비교 평가해, 문제 해결의 질적 수준이 우수하다는 것을 실험을 통해 알아보고자 한다.

개미 집단 시스템을 이용한 진화 하드웨어 (Evolvable Hardware Using Ant Colony System)

  • 황금성;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.244-246
    • /
    • 2002
  • 진화 하드웨어(Evolvable Hardware)는 환경 적응력이 강하고 최적의 상태를 유연하게 유지하는 하드웨어 설계 기법이나 회로가 복잡해질수록 진화가 어려워지는 문제로 인해 활용이 늦어지고 있다. 본 논문에서는 이를 해결하기 위한 많은 연구 중 회로 진화 과정 분석을 위한 방법으로 개미집단 시스템을 제안한다. 경로 최적화 알고리즘인 개미집단 시스템을 적절히 변형하여 진화 하드웨어에 적용시키는 방법을 제안하고 이를 실험으로 확인하였으며, 실험 결과 하드웨어의 진화 과정을 관찰할 수 있었고, 목표 하드웨어의 해공간 특성이 페로몬으로 분포하고 있음도 관찰할 수 있었다.

  • PDF

Temporal Difference 학습을 이용한 다중 집단 강화.다양화 상호작용 개미 강화학습 (Multi Colony Intensification.Diversification Interaction Ant Reinforcement Learning Using Temporal Difference Learning)

  • 이승관
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.1-9
    • /
    • 2005
  • 본 논문에서는 Temporal Difference 학습을 적용한 Ant-Q 기반 개미 모델을 이용한 다중 집단 상호작용 개미 강화학습 모델을 제안한다. 이 모델은 몇 개의 독립적 개미시스템 집단으로 이루어져 있으며, 상호작용은 집단간 엘리트 전략(강화, 다양화 전략)에 따라 임무를 수행한다. 강화 전략은 다른 에이전트 집단의 휴리스틱 정보를 이용해 좋은 경로 선택을 가능하게 한다. 이것은 집단간 긍정적 상호작용을 통해 에이전트들의 방문 빈도가 높은 간선을 선택하게 한다. 다양화 전략은 에이전트들이 다른 에이전트 집단의 탐색 정보에 의해 부정적 상호작용을 수행함으로써 방문 빈도수가 높은 간선의 선택을 회피하게 만든다. 이러한 전략을 통해 제안한 강화학습은 기존의 개미집단시스템, Ant-Q학습보다 최적해에 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.

  • PDF

개미 집단 최적화에서 강화와 다양화의 조화 (Balance between Intensification and Diversification in Ant Colony Optimization)

  • 이승관;최진혁
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.100-107
    • /
    • 2011
  • 휴리스틱 탐색에서 강화(Intensification)와 다양화(Diversification)의 조화는 중요한 연구 부분이다. 본 논문에서는 개미 집단 최적화(Ant Colony Optimization, ACO) 접근법의 하나인 개미 집단 시스템(Ant Colony System, ACS)에서 강화와 다양화의 조화를 통한 성능 향상시키는 방법을 제안한다. 제안 방법은 다양화 전략으로 전역 최적 경로가 향상되지 않는 경우 반복 탐색 구간을 고려해 상태전이 규칙의 파라미터를 변경해 탐색하고, 이러한 다양화 전략을 통해 발견된 전역 최적 경로에서 이전 전역 최적 경로와 현재 전역 최적 경로의 중복 간선에 대해 페로몬을 강화시켜 탐색하는 혼합된 탐색 방법을 제안한다. 그리고, 실험을 통해 제안된 방법이 기존 ACS-3-opt 알고리즘, ACS-Subpath 알고리즘, ACS-Iter 알고리즘, ACS-Global-Ovelap 알고리즘에 비해 최적 경로 탐색 및 평균 최적 경로 탐색의 성능이 우수함을 보여 준다.

전역 최적 경로가 향상되지 않는 반복 탐색 횟수를 고려한 개미 집단 시스템 (Ant Colony System Considering the Iteration Search Frequency that the Global Optimal Path does not Improved)

  • 이승관;이대호
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.9-15
    • /
    • 2009
  • 개미 집단 시스템은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법이다. 기존 개미 집단시스템은 전역갱신과정에서 탐색된 전역 최적 경로에 대해서만 페로몬 갱신을 수행하는데, 전역 최적 경로가 탐색되지 않으면 페로몬 증발만 일어나며 주어진 종료 조건을 만족할 때까지 아무리 많은 반복 수행에도 페로몬 강화가 일어나지 않는다. 본 논문에서 제안된 개선된 개미 집단시스템은 전역 최적 경로의 길이가 주어진 반복 사이클 횟수 동안 더 이상 향상되지 못하면 국부최적에 빠졌다고 평가하고 상태전이 규칙에서 파라미터 감소를 통해 다음 노드를 선택하게 하였다. 이로 인해, 상태전이 규칙에서 파라미터 감소에 의한 다양화 전략으로 탐색하는 결과가 최적 경로 탐색뿐만 아니라, 평균 최적 경로 탐색과 평균 반복횟수의 성능이 우수함을 보여 주었으며, 실험을 통해 그 성능을 평가하였다.

개미군락시스템에서 수정된 지역 갱신 규칙을 이용한 최적해 탐색 기법 (Optimal solution search method by using modified local updating rule in Ant Colony System)

  • 홍석미;정태충
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.15-19
    • /
    • 2004
  • 개미군락시스템 (Ant Colony System, ACS)은 조합 최적화 문제를 해결하기 위한 기법으로 생물학적 기반의 메타휴리스틱 접근법이다. 지나간 경로에 대하여 페로몬을 분비하고 통신 매개물로 사용하는 실제 개미들의 추적 행위를 기반으로 한다. 최적 경로를 찾기 위해서는 보다 다양한 에지들에 대한 탐색이 필요하다. 기존 개미군락시스템의 지역 갱신 규칙에서는 지나간 에지에 대하여 고정된 페로몬 갱신 값을 부여하고 있다. 그러나 본 논문에서는 방문한 도시간의 거리와 해당 에지의 방문 횟수를 이용하여 페로몬을 부여한다. 보다 많은 정보를 탐색에 활용함으로써 기존의 방법에 비해 지역 최적화에 빠지지 않고 더 나은 해를 찾을 수 있었다.

개미 시스템을 기반으로 한 Ad hoc 네트워크 멀티캐스팅

  • 이세영;김중항;장형수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (3)
    • /
    • pp.1-3
    • /
    • 2004
  • 본 논문에서는 Core Based Tree(CBT) 알고리즘과 개미 집단 알고리즘의 특성을 융합하여 Mobile Ad hoc Network(MANET)에 맞는 멀티캐스팅 알고리즘, Ad hoc network Multicasting with Ant System (ANMAS)을 제안한다. ANMAS는 개미 알고리즘의 간접적 정보 전달 및 평가 방법을 통해 멀티캐스팅에 필요한 위상정보를 수집하여 견고한 멀티캐스팅 그룹을 형성함으로서 기존의 알고리즘에 비해 효율적이며 실험결과를 통해 이를 확인할 수 있다.

  • PDF

강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구 (Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification)

  • 이승관;정태충
    • 전자공학회논문지CI
    • /
    • 제40권6호
    • /
    • pp.87-94
    • /
    • 2003
  • 휴리스틱 알고리즘 연구에 있어서 중요한 분야 중 하나가 강화(Intensification)와 다양화(Diversification)의 조화를 맞추는 문제이다. 개미 집단 최적화(Ant Colony Optimization, ACO)는 최근에 제안된 조합 최적화 문제를 해결하기 위한 메타휴리스틱 탐색 방법으로, 그리디 탐색(greedy search)뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 순회 판매원 문제(Traveling Salesman Problem, TSP)를 풀기 위해 처음으로 제안되었다. 본 논문에서는 ACO접근법의 하나인 개미 집단 시스템(Ant Colony System ACS)에서 강화와 다양화의 조화를 통한 성능향상기법에 대해 알아본다. 먼저 에이전트들의 방문 횟수 적용을 통한 상태전이는 탐색 영역을 넓힘으로써 에이전트들이 더욱 다양하게 탐색하게 한다. 그리고, 전역 갱신 규칙에서 전역 최적 경로만 갱신하는 전통적인 ACS알고리즘에서 대하여, 경로 사이클을 구성한 후 각 경로에 대해 긍정적 강화를 받는 엘리트 경로를 구분하는 기준을 정하고, 그 기준에 의해 추가 강화하는 방법을 제안한다. 그리고 여러 조건 하에서 TSP문제를 풀어보고 그 성능에 대해 기존의 ACS 방법과 제안된 방법을 비교 평가해, 해의 질과 문제를 해결하는 속도가 우수하다는 것을 증명한다.

개미 집단 시스템에서 TD-오류를 이용한 강화학습 기법 (A Reinforcement Loaming Method using TD-Error in Ant Colony System)

  • 이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제11B권1호
    • /
    • pp.77-82
    • /
    • 2004
  • 강화학습에서 temporal-credit 할당 문제 즉, 에이전트가 현재 상태에서 어떤 행동을 선택하여 상태전이를 하였을 때 에이전트가 선택한 행동에 대해 어떻게 보상(reward)할 것인가는 강화학습에서 중요한 과제라 할 수 있다. 본 논문에서는 조합최적화(hard combinational optimization) 문제를 해결하기 위한 새로운 메타 휴리스틱(meta heuristic) 방법으로, greedy search뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 Traveling Salesman Problem(TSP)를 풀기 위해 제안된 Ant Colony System(ACS) Algorithms에 Q-학습을 적용한 기존의 Ant-Q 학습방범을 살펴보고 이 학습 기법에 다양화 전략을 통한 상태전이와 TD-오류를 적용한 학습방법인 Ant-TD 강화학습 방법을 제안한다. 제안한 강화학습은 기존의 ACS, Ant-Q학습보다 최적해에 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.