• Title/Summary/Keyword: 개미시스템

Search Result 81, Processing Time 0.027 seconds

Study of the present situation on the termite control of wooden structures(I) - Focused on the case of US (목조건축물의 흰개미 방제에 대한 국외 현황조사(I) - 미국의 사례를 중심으로 -)

  • Jeong, So Young
    • 보존과학연구
    • /
    • s.32
    • /
    • pp.123-136
    • /
    • 2011
  • There are more than 2,800 different species of termites in the world, but just there is one species (Reticulitermes speratus kyushuensis Morimoto) in Korea. Once wooden structures are damaged by termites, we are applying chemical control methods such as fumigation, treatment of insecticidal and antiseptic chemicals, soil termiticide treatment, and termite colony elimination system to pest control. But in Korea, the termite infestation is gradually increasing, so it is essential to study on the present situation of termite control in US or Japan. Accordingly, in this part we have studied focusing on the case of US. In the US, there are three groups of termites : Subterranean, Drywood, Dampwood termites, and they caused more severe infestation compared with Korea. When a structure has become infested with termites, it is important that appropriate action must be taken: the chemical pest control (soil treatment, termite baiting, termite colony elimination), the modification and maintenance of buildings and the regular inspection for follow-up. And with consideration for different characteristics of termites, the process of pest control is made according to each species of termites. Most of the subterranean termite control is done by applying either termiticide to the soil or termite monitoring and baiting system around the structure. On the other hand, drywood termite control methods can be categorized as either the treatment for the whole structure or the treatment for localized area. Applications to the whole structure are done by fumigants or heat and the localized treatments are carried out with chemicals as well as heat, freezing, microwave and electricity.

  • PDF

The Effect of Multiagent Interaction Strategy on the Performance of Ant Model (개미 모델 성능에서 다중 에이전트 상호작용 전략의 효과)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • One of the important fields for heuristics algorithm is how to balance between Intensificationand Diversification. Ant Colony System(ACS) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we propose Multi Colony Interaction Ant Model that achieves positive negative interaction through elite strategy divided by intensification strategy and diversification strategy to improve the performance of original ACS. And, we apply multi colony interaction ant model by this proposed elite strategy to TSP and compares with original ACS method for the performance.

  • PDF

Truss Design Optimization using Ant Colony Optimization Algorithm (개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화)

  • Lee, Sang-Jin;Han, Yu-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.709-712
    • /
    • 2010
  • 본 논문은 개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화에 대한 이론적 배경과 수치해석 결과를 기술하였다. 트러스의 설계최적화를 수행하기 위하여 구조물의 중량을 최소화하는 것을 목적 함수로 하고 구조물에서 발생하는 응력과 변위의 허용치를 초과하지 않는 것을 구속조건으로 이용하였다. 본 연구에서는 개미군락알고리즘을 구조물의 최적화에 적용하기 위하여 외판원문제(travelling salesman problem: TSP)를 재 정의하는 방법을 사용하였으며 최대-최소개미시스템(max-min ant system)을 도입하여 트러스 구조물의 최적설계를 수행하였다. 이때 이산화 된 설계변수를 사용하였으며 구속조건을 처리하기 위해서 벌점함수를 사용하였다. 본 연구를 통하여 개미군락최적화 알고리즘은 구조최적화에 그 적용 가능성이 높았으며 전통적인 최적검색 기법의 새로운 대안으로 이용될 수 있는 것으로 나타났다.

  • PDF

Optimal solution search method by using modified local updating rule in Ant Colony System (개미군락시스템에서 수정된 지역 갱신 규칙을 이용한 최적해 탐색 기법)

  • Hong, Seok-Mi;Chung, Tae-Choong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • Ant Colony System(ACS) is a meta heuristic approach based on biology in order to solve combinatorial optimization problem. It is based on the tracing action of real ants which accumulate pheromone on the passed path and uses as communication medium. In order to search the optimal path, ACS requires to explore various edges. In existing ACS, the local updating rule assigns the same pheromone to visited edge. In this paper, our local updating rule gives the pheromone according to the number of visiting times and the distance between visited cities. Our approach can have less local optima than existing ACS and find better solution by taking advantage of more informations during searching.

Evolvable Hardware Using Ant Colony System (개미 집단 시스템을 이용한 진화 하드웨어)

  • 황금성;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.244-246
    • /
    • 2002
  • 진화 하드웨어(Evolvable Hardware)는 환경 적응력이 강하고 최적의 상태를 유연하게 유지하는 하드웨어 설계 기법이나 회로가 복잡해질수록 진화가 어려워지는 문제로 인해 활용이 늦어지고 있다. 본 논문에서는 이를 해결하기 위한 많은 연구 중 회로 진화 과정 분석을 위한 방법으로 개미집단 시스템을 제안한다. 경로 최적화 알고리즘인 개미집단 시스템을 적절히 변형하여 진화 하드웨어에 적용시키는 방법을 제안하고 이를 실험으로 확인하였으며, 실험 결과 하드웨어의 진화 과정을 관찰할 수 있었고, 목표 하드웨어의 해공간 특성이 페로몬으로 분포하고 있음도 관찰할 수 있었다.

  • PDF

Multi Colony Ant Model using Positive.Negative Interaction between Colonies (집단간 긍정적.부정적 상호작용을 이용한 다중 집단 개미 모델)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.751-756
    • /
    • 2003
  • Ant Colony Optimization (ACO) is new meta heuristics method to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was firstly proposed for tackling the well known Traveling Salesman Problem (TSP) . In this paper, we introduce Multi Colony Ant Model that achieve positive interaction and negative interaction through Intensification and Diversification to improve original ACS performance. This algorithm is a method to solve problem through interaction between ACS groups that consist of some agent colonies to solve TSP problem. In this paper, we apply this proposed method to TSP problem and evaluates previous method and comparison for the performance and we wish to certify that qualitative level of problem solution is excellent.

Elite Ant System for Solving Multicast Routing Problem (멀티캐스트 라우팅 문제 해결을 위한 엘리트 개미 시스템)

  • Lee, Seung-Gwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.147-152
    • /
    • 2008
  • Ant System(AS) is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, AS is applied to the Multicast Routing Problem. Multicast Routing is modeled as the NP-complete Steiner tree problem. This is the shortest path from source node to all destination nodes. We proposed new AS to resolve this problem. The proposed method selects the neighborhood node to consider all costs of the edge and the next node in state transition rule. Also, The edges which are selected elite agents are updated to additional pheromone. Simulation results of our proposed method show fast convergence and give lower total cost than original AS and $AS_{elite}$.

  • PDF

Improved Edge Detection Algorithm Using Ant Colony System (개미 군락 시스템을 이용한 개선된 에지 검색 알고리즘)

  • Kim In-Kyeom;Yun Min-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.315-322
    • /
    • 2006
  • Ant Colony System(ACS) is easily applicable to the traveling salesman problem(TSP) and it has demonstrated good performance on TSP. Recently, ACS has been emerged as the useful tool for the pattern recognition, feature extraction, and edge detection. The edge detection is wifely utilized in the area of document analysis, character recognition, and face recognition. However, the conventional operator-based edge detection approaches require additional postprocessing steps for the application. In the present study, in order to overcome this shortcoming, we have proposed the new ACS-based edge detection algorithm. The experimental results indicate that this proposed algorithm has the excellent performance in terms of robustness and flexibility.

Multi Colony Intensification.Diversification Interaction Ant Reinforcement Learning Using Temporal Difference Learning (Temporal Difference 학습을 이용한 다중 집단 강화.다양화 상호작용 개미 강화학습)

  • Lee Seung-Gwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper, we suggest multi colony interaction ant reinforcement learning model. This method is a hybrid of multi colony interaction by elite strategy and reinforcement teaming applying Temporal Difference(TD) learning to Ant-Q loaming. Proposed model is consisted of some independent AS colonies, and interaction achieves search according to elite strategy(Intensification, Diversification strategy) between the colonies. Intensification strategy enables to select of good path to use heuristic information of other agent colony. This makes to select the high frequency of the visit of a edge by agents through positive interaction of between the colonies. Diversification strategy makes to escape selection of the high frequency of the visit of a edge by agents achieve negative interaction by search information of other agent colony. Through this strategies, we could know that proposed reinforcement loaming method converges faster to optimal solution than original ACS and Ant-Q.

  • PDF

개미 시스템을 기반으로 한 Ad hoc 네트워크 멀티캐스팅

  • 이세영;김중항;장형수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.1-3
    • /
    • 2004
  • 본 논문에서는 Core Based Tree(CBT) 알고리즘과 개미 집단 알고리즘의 특성을 융합하여 Mobile Ad hoc Network(MANET)에 맞는 멀티캐스팅 알고리즘, Ad hoc network Multicasting with Ant System (ANMAS)을 제안한다. ANMAS는 개미 알고리즘의 간접적 정보 전달 및 평가 방법을 통해 멀티캐스팅에 필요한 위상정보를 수집하여 견고한 멀티캐스팅 그룹을 형성함으로서 기존의 알고리즘에 비해 효율적이며 실험결과를 통해 이를 확인할 수 있다.

  • PDF