• Title/Summary/Keyword: 개념 그래프 유사도

Search Result 18, Processing Time 0.025 seconds

A Description Method of Korean Auxiliary Verbs (한국어 보조동사의 개념그래프적 기술 방안)

  • Lee, Byeong-Hui;Gwon, O-Seok
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.373-380
    • /
    • 2001
  • 본 논문은 한국어 보조동사의 의미를 Sowa에 의해 제안되고 국제표준이 되고있는 개념그래프를 이용하여 형식적으로 기술하는 방법을 제안한다. 이를 위해 영어의 양상과 상에 관한 개념그래프를 알아보고 한국어 보조동사를 통사/의미론적으로 고찰한다. 한국어 보조동사의 개념그래프적 기술을 위해, 각종 논문과 국어사전에서 한국어 보조동사 40개의 여러 예문들을 수집하여 완료, 진행, 봉사, 시도, 강세, 원망, 지속, 추정의 8가지 의미로 분류하고 이들을 개념그래프로 기술한다. 실험에서는 이들 8가지 의미들을 인공지능언어의 일종인 LIPS과 유사한 KIF로 작성하고 C++를 이용하여 한국어 보조동사가 포함된 문장을 입력받아 개념그래프로 변환하는 프로그램을 구현한다. 문장 내의 모든 범주들의 개념과 개념 관계가 자연어의 모든 의미관계를 표시할 수 있는 개념그래프는 한국어 보조동사의 다양한 의미를 기술하는데 적합함을 알 수 있었다.

  • PDF

An Efficient Conceptual Clustering Scheme (효율적인 개념 클러스터링 기법)

  • Yang, Gi-Chul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.349-354
    • /
    • 2020
  • This paper, firstly, propose a new Clustering scheme Based on Conceptual graphs (CBC) that can describe objects freely and can perform clustering efficiently. The conceptual clustering is one of machine learning technique. The similarity among the objects in conceptual clustering are decided on the bases of concept membership, unlike the general clustering scheme which decide the similarity without considering the context or environment of the objects. A new conceptual clustering scheme, CBC, which can perform efficient conceptual clustering by describing various objects freely with conceptual graphs is introduced in this paper.

A Method for Efficient Malicious Code Detection based on the Conceptual Graphs (개념 그래프 기반의 효율적인 악성 코드 탐지 기법)

  • Kim Sung-Suk;Choi Jun-Ho;Bae Young-Geon;Kim Pan-Koo
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.45-54
    • /
    • 2006
  • Nowadays, a lot of techniques have been applied for the detection of malicious behavior. However, the current techniques taken into practice are facing with the challenge of much variations of the original malicious behavior, and it is impossible to respond the new forms of behavior appropriately and timely. There are also some limitations can not be solved, such as the error affirmation (positive false) and mistaken obliquity (negative false). With the questions above, we suggest a new method here to improve the current situation. To detect the malicious code, we put forward dealing with the basic source code units through the conceptual graph. Basically, we use conceptual graph to define malicious behavior, and then we are able to compare the similarity relations of the malicious behavior by testing the formalized values which generated by the predefined graphs in the code. In this paper, we show how to make a conceptual graph and propose an efficient method for similarity measure to discern the malicious behavior. As a result of our experiment, we can get more efficient detection rate.

Graph-based modeling for protein function prediction (단백질 기능 예측을 위한 그래프 기반 모델링)

  • Hwang Doosung;Jung Jae-Young
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.209-214
    • /
    • 2005
  • The use of protein interaction data is highly reliable for predicting functions to proteins without function in proteomics study. The computational studies on protein function prediction are mostly based on the concept of guilt-by-association and utilize large-scale interaction map from revealed protein-protein interaction data. This study compares graph-based approaches such as neighbor-counting and $\chi^2-statistics$ methods using protein-protein interaction data and proposes an approach that is effective in analyzing large-scale protein interaction data. The proposed approach is also based protein interaction map but sequence similarity and heuristic knowledge to make prediction results more reliable. The test result of the proposed approach is given for KDD Cup 2001 competition data along with those of neighbor-counting and $\chi^2-statistics$ methods.

Named Entity Linking Based on Deep Learning Model (딥러닝 모형 기반 한국어 개체명 연결)

  • Sohn, Dae-Neung;Lee, Dongju;Lee, Yong-Hun;Chung, Youjin;Kang, Inho
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.90-95
    • /
    • 2016
  • 개체명 연결이란 문장 내 어떤 단어를 특정 사물이나 사람, 장소, 개념 등으로 연결하는 작업이다. 과거에는 주로 연결 대상 단어 주변 문맥에서 자질 공학을 거쳐 입력을 만들고, 이를 이용해 SVM이나 Logistic Regression 혹은 유사도 계산, 그래프 기반 방법론 등으로 지도/비지도 학습하여 문제를 풀어왔다. 보통 개체명 연결 문제의 출력 부류(class)가 사물이나 사람 수만큼이나 매우 커서, 자질 희소성 문제를 겪을 수 있다. 본 논문에서는 이 문제에 구조적으로 더 적합하며 모형화 능력이 더 뛰어나다 여겨지는 딥러닝 기법을 적용하고자 한다. 다양한 딥러닝 모형을 이용한 실험 결과 LSTM과 Attention기법을 같이 사용했을 때 가장 좋은 품질을 보였다.

  • PDF

Named Entity Linking Based on Deep Learning Model (딥러닝 모형 기반 한국어 개체명 연결)

  • Sohn, Dae-Neung;Lee, Dongju;Lee, Yong-Hun;Chung, Youjin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.90-95
    • /
    • 2016
  • 개체명 연결이란 문장 내 어떤 단어를 특정 사물이나 사람, 장소, 개념 등으로 연결하는 작업이다. 과거에는 주로 연결 대상 단어 주변 문맥에서 자질 공학을 거쳐 입력을 만들고, 이를 이용해 SVM이나 Logistic Regression 혹은 유사도 계산, 그래프 기반 방법론 등으로 지도/비지도 학습하여 문제를 풀어왔다. 보통 개체명 연결 문제의 출력 부류(class)가 사물이나 사람 수만큼이나 매우 커서, 자질 희소성 문제를 겪을 수 있다. 본 논문에서는 이 문제에 구조적으로 더 적합하며 모형화 능력이 더 뛰어나다 여겨지는 딥러닝 기법을 적용하고자 한다. 다양한 딥러닝 모형을 이용한 실험 결과 LSTM과 Attention기법을 같이 사용했을 때 가장 좋은 품질을 보였다.

  • PDF

A New Similarity Measure for Improving Ranking in QA Systems (질의응답시스템 응답순위 개선을 위한 새로운 유사도 계산방법)

  • Kim Myung-Gwan;Park Young-Tack
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.529-536
    • /
    • 2004
  • The main idea of this paper is to combine position information in sentence and query type classification to make the documents ranking to query more accessible. First, the use of conceptual graphs for the representation of document contents In information retrieval is discussed. The method is based on well-known strategies of text comparison, such as Dice Coefficient, with position-based weighted term. Second, we introduce a method for learning query type classification that improves the ability to retrieve answers to questions from Question Answering system. Proposed methods employ naive bayes classification in machine learning fields. And, we used a collection of approximately 30,000 question-answer pairs for training, obtained from Frequently Asked Question(FAQ) files on various subjects. The evaluation on a set of queries from international TREC-9 question answering track shows that the method with machine learning outperforms the underline other systems in TREC-9 (0.29 for mean reciprocal rank and 55.1% for precision).

Explicit feature analysis model of S/W Product line domain using Ontology (온톨로지를 이용한 S/W Product line 도메인의 명시적 feature 분석 모델)

  • Lee Soon-Bok;Lee Tae-Woong;Kim Jin-Woo;Baik Doo-Kwon
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.269-272
    • /
    • 2006
  • 현재 제품계열 공학에서 feature 중심의 공통성 및 가변성 분석을 통한 재사용성에 대한 연구가 활발히 이루어지고 있다. 지금까지는 도메인 전문가의 직관 및 경험에 의해 feature가 분석되어 그 개념의 불명확함으로 재사용 측면에서 제한점을 내포하고 있다. 본 논문에서는 개별 feature 속성 List 작성을 통해 feature간의 의미관계를 중심으로 한 Pattern 분석 방법을 제시하고, 의미 유사성 관계를 적용한 feature 온톨로지 그래프를 이용하여 S/W 제품계열 도메인 공학에서 사용자와 개발자간의 동일한 해석이 가능하고 재사용성을 위한 명시적 feature를 분석 및 추출하는 모델을 제안한다.

  • PDF

Document Summarization Considering Entailment Relation between Sentences (문장 수반 관계를 고려한 문서 요약)

  • Kwon, Youngdae;Kim, Noo-ri;Lee, Jee-Hyong
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.179-185
    • /
    • 2017
  • Document summarization aims to generate a summary that is consistent and contains the highly related sentences in a document. In this study, we implemented for document summarization that extracts highly related sentences from a whole document by considering both similarities and entailment relations between sentences. Accordingly, we proposed a new algorithm, TextRank-NLI, which combines a Recurrent Neural Network based Natural Language Inference model and a Graph-based ranking algorithm used in single document extraction-based summarization task. In order to evaluate the performance of the new algorithm, we conducted experiments using the same datasets as used in TextRank algorithm. The results indicated that TextRank-NLI showed 2.3% improvement in performance, as compared to TextRank.

Design and Implemantation of Information Retrieval System based on Semantic Information (의미정보기반 검색시스템의 설계 및 구현)

  • Park, Chang-Keun;Yang, Gi-Chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.265-268
    • /
    • 2004
  • Keyword matching technique which is used in most information retrieval systems is unfit for efficient processing of geometrically increasing information. The problem can be solved by using semantic information and an efficient method of semantic processing is introduced in this paper. The technique uses conceptual graph to represent the semantic information and apply it for information retrieval. The implemented system can perform exact matching and partial matching. Partial matching has two different types. One is syntactic partial matching and the other is semantic partial matching. The semantic semilaries are measured by the subclass relations in the ontology. The introduced technique can be used not only information retrieval but also in various applications such as an implementation of dynamic hyperlinks.

  • PDF