• Title/Summary/Keyword: 강한 해상풍

Search Result 12, Processing Time 0.024 seconds

L밴드 인공위성 SAR센서를 활용한 한반도 주변해의 산출 해상풍 정확도 특성

  • Kim, Tae-Seong;Park, Gyeong-Ae
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.133-133
    • /
    • 2010
  • 인공위성 SAR센서는 기존 산란계 해상풍 자료의 낮은 해상도로 인한 여러 한계를 극복함으로써 다양한 해양연구에 있어 필요성과 활용영역이 넓어지고 있다. 이러한 추세에 따라 전세계적으로 다파장 SAR 센서들이 운용 또는 발사 예정에 있음에도 불구하고 현재까지 한반도 주변해에 대한 SAR 해상풍 산출 연구는 C밴드에만 한정되어왔다. 본 연구에서는 L밴드 해상풍 추출알고리즘을 적용하여 L밴드 SAR 영상으로부터 한반도 주변해의 해상풍을 추출하고 산란계 해상풍 자료와 비교 분석을 통해 정확도 특성을 제시하고자 하였다. 2007년 8월 우리나라 동해 지역을 관측한 L밴드 ALOS PALSAR 영상에 대해 L밴드 HH편광 GMF 알고리즘을 적용하여 해상풍을 산출하였다. 산출 해상풍은 동일시점의 산란계 QuikSCAT 자료와 공간적으로 유사한 패턴을 보였으며 두 자료 간의 풍속오차는 3.45m/s로 나타났다. 연구 해역과 같이 강한 바람 범위에서는 산출 해상풍 간의 차이가 크게 나타나며 풍향으로 인한 오차특성이 보인다. 특히 풍속의 경우, 산란계 해상풍이 중간바람 범위에 집중된 것에 비해 L밴드 SAR 산출 해상풍은 강한 바람 범위까지 포함하는 넓은 풍속값 범위를 나타냈다.

  • PDF

Ocean Surface Winds Over the Seas Around Korea Measured by the NSCAT(NASA Scatterometer) (NSCAT (NASA Scatterometer)에 의한 한국근해의 해상풍)

  • 이동규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.37-52
    • /
    • 1998
  • The NSCAT(NASA Scatterometer) carried by the japanese Advanced Earth Observing Satellite(ADEOS) was the first high resolution(25 km) device for the direct wind measurement over the ocean. Even it was ceased to operate in lune of 1977 because of the power failure, it gave the first opportunity to the marine meteorologists to study the direct measured ocean wind during its 9 months of operation, especially around Korea. This study is to show monthly mean ocean wind and wind stress curl fields around Korea from January, 1997 to June, 1997. Mean ocean winds in January are predominantly northwesterly and the strongest wind(12 m/s) is found near Vladivostok. The winds in the western East Sea are strongly inf1uenced by the mountain range in Korea and these topographically influenced winds make about five times larger wind stress curl fields than previous estimates based on the weather maps. The calculation of Sverdrup transport in the East Sea shows the possibility of the directional change of the East Korean Cold Current from southward to northward direction caused by the winter wind. The downwelling area near North Korea has maximum estimated speed of 45 m in january and this wind induced downwelling makes good condition for the formation of Intermediate East Sea Water together with vigorous mixing by the strong wind.

Comparison of KMA Operational Model RDAPS with QuikSCAT Sea Surface Wind Data (기상청 현업 모델 RDAPS와 QuikSCAT 해상풍 자료의 비교)

  • You, Sung-Hyup;Cho, Jae-Gab;Seo, Jang-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2007
  • This study compared the sea surface wind pattern between model results from KMA operational model (RDAPS) and observational results from QuikSCAT in the 2005-2006 year. The mean spatial distributions of sea surface wind show the prominent seasonal patterns of summer and winter season adjacent to Korean Peninsular. The statistical analysis also shows well seasonal variation of sea surface wind patterns between model and observation results. The BIAS value represents less than -0.5 m/s and -1 m/s in summer and winter seasons, respectively. The spatially averaged correlation coefficient shows larger than 0.7 and 0.8 in summer and winter seasons, respectively. The correlation coefficient of winter season shows higher value than that of summer season in the comparison between model and observation. This results show that the RDAPS model simulate well strong sea surface wind in winter season rather than weak sea surface wind in summer season.

Model Optimization for Sea Surface Wind Simulation of Strong Wind Cases (강풍 사례의 해상풍 모의를 위한 모형의 최적화)

  • Heo, Ki-Young;Lee, Jeong-Wook;Ha, Kyung-Ja;Jun, Ki-Cheon;Park, Kwang-Soon
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.263-279
    • /
    • 2008
  • This study is concerned with the optimization of models using MM5 and WRF mesoscale numerical models to simulate strong sea surface winds, such as that of typhoon Shanshan on 17 September 2006, and the Siberian high event on 16 December 2006, which were selected for displaying the two highest mean wind speeds. The model optimizations for the lowest level altitude, physical parameters and horizontal resolution were all examined. The sea surface wind values obtained using a logarithmic function which takes into account low-level stability and surface roughness were more accurate than those obtained by adjusting the lowest-level of the model to 10 m linearly. To find the optimal parameters for simulating strong sea surface winds various physical parameters were combined and applied to the model. Model grid resolutions of 3-km produced better results than those of 9-km in terms of displaying accurately regions of strong wind, low pressure intensities and low pressure mesoscale structures.

Satellite Remote Sensing to Monitor Seasonal Horizontal Distribution of Resuspended Sediments in the East China Sea (위성원격탐사에 의한 동중국해 재부상 부유사의 계절적 수평분포 특성)

  • Lee, Na-Kyung;Suh, Young-Sang;Kim, Young-Seup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.151-161
    • /
    • 2003
  • The spatiotemporal distribution of resuspended solid on the shelf of the southern Yellow Sea and the northern East China Sea was studied. The sea surface reflectance imageries obtained by remote sensing using satellite at channels of red (620~670nm), green(545~565nm) and blue(459~479nm) from Terra MODIS were used to explain the front of the high concentration suspended solid(SS) on the shelf in the East China Sea. The horizontal distribution of the resuspended solid was depended on the wind force, tidal current and stratification of water. The horizontal distribution areas of the resuspended solid in winter season during January~April, 2002 were three times wider than those in summer season during June~September, 2001.

  • PDF

Production of Future Wind Resource Map under Climate Change over Korea (기후변화를 고려한 한반도 미래 풍력자원 지도 생산)

  • Kim, Jin Young;Kim, Do Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.3-8
    • /
    • 2017
  • In this study future wind resource maps have been produced under climate change scenario using ensemble regional climate model weather research and forecasting(WRF) for the period from 2045 to 2054(mid 21st century). Then various spatiotemporal analysis has been conducted in terms of monthly and diurnal. As a result, monthly variation(monsoon circulation) was larger than diurnal variation(land-sea circulation) throughout the South Korea. Strong wind area with high wind power energy was varied on months and regions. During whole years, strong wind with high wind resource was pronounced at cold(warm) months in particular Gangwon mountainous and coastal areas(southwestern coastal area) driven by strong northwesterly(southwesterly). Projected strong and weak wind were presented in January and September, respectively. Diurnal variation were large over inland and mountainous area while coastal area were small. This new monthly and diurnal variation would be useful to high resource area analysis and long-term operation of wind power according to wind variability in future.

Time Series Analysis of the Subsurface Oceanic Data and Prediction of the Sea Surface Temperature in the Tropical Pacific (적도 태평양 아표층 자료의 시계열 분석 및 표층 수온 예측)

  • Chang You-Soon;Lee Da-Un;Youn Yong-Hoon;Seo Jang-Won
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.706-713
    • /
    • 2005
  • Subsurface oceanic data (Z20; Depth of $20^{\circ}C$ isotherm and WWV; Warm Water Volume) from the tropical Pacific Ocean from 1980 to 2004 were utilized to examine upper ocean variations in relation to E1 Nino. Time series analysis using EOF, composite, and cross-correlation methods indicated that there are significant time delays between subsurface oceanic parameters and the Nino3.4 SST. It implied that Z20 and WWV would be more reliable predictors of El Nino events. Based on analyzed results, we also constructed neural network model to predict the Nino3.4 SST from 1996 to 2004. The forecasting skills for the model using WWV were statistically higher than that using the trade wind except for short range forecasting less than 3 months. This model greatly predicted SST than any other previous statistical model, especially at lead times of 5 to 8 months.

A Study of Storm Surges Characteristics on the Korean Coast Using Tide/Storm Surges Prediction Model and Tidal Elevation Data of Tidal Stations (조석/폭풍해일 예측 모델과 검조소 조위자료를 활용한 한반도 연안 폭풍해일 특성 연구)

  • You, Sung-Hyup;Lee, Woo-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.361-373
    • /
    • 2010
  • Analysis has been made on the tide/storm surges characteristics near the Korean marginal seas in the 2008 and 2009 years using operational ocean prediction model of the Korea Meteorological Administration(KMA). In order to evaluate its performance, its results were compared with the observed data by tidal stations around Korean Peninsula. The model used in this study predicts very well the characteristics of tide/storm surges near the Korean Peninsula. Simulated storm surges show the evident effects of Typhoons in summer season. The averaged root mean square error(RMSE) of 48 hr forecasting between the modeled and observed storm surges are 0.272 and 0.420 m in 2008 and 2009, respectively. Due to strong sea winds, the highest storm surges heights was found in summer season of 2008, however, in 2009, the high storm surges heights was also found in other seasons. When Typhoon Kalmaegi(2008) and Morokot(2009) approached to Korean Peninsular, the accuracy of model predictions is almost same as annual mean value but the precision accuracy for Typhoon Morakot is lower than of Typhoon Kalmaegi similar to annual results.

Development and Verification of a Rapid Refresh Wave Forecasting System (초단기 파랑예측시스템 구축 및 예측성능 검증)

  • Roh, Min;La, NaRy;Oh, SangMyeong;Kang, KiRyong;Chang, PilHun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.340-350
    • /
    • 2020
  • A rapid refresh wave forecasting system has been developed using the sea wind on the Korea Local Analysis and Prediction System. We carried out a numerical experiment for wind-wave interaction as an important parameter in determining the forecasting performance. The simulation results based on the seasons of with typhoon and without typhoon has been compared with the observation of the ocean data buoy to verify the forecasting performance. In case of without typhoon, there was an underestimate of overall forecasting tendency, and it confirmed that an increase in the wind-wave interaction parameter leads to a decrease in the underestimate tendency and root mean square error (RMSE). As a result of typhoon season by applying the experiment condition with minimum RMSE on without typhoon, the forecasting error has increased in comparison with the result without typhoon season. It means that the wave model has considered the influence of the wind forcing on a relatively weak period on without typhoon, therefore, it might be that the wave model has not sufficiently reflected the nonlinear effect and the wave energy dissipation due to the strong wind forcing.

Influence of Large-Scale Environments on Tropical Cyclone Activity over the Western North Pacific: A Case Study for 2009 (대규모 순환장이 북서태평양 태풍활동에 끼치는 영향: 2009년의 예)

  • Choi, Woosuk;Ho, Chang-Hoi;Kim, Hyeong-Seog
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.133-145
    • /
    • 2010
  • This study examined the characteristics of tropical cyclone(TC) activity over the western North Pacific(WNP) in 2009. Twenty-two TCs formed in 2009, which is slightly below normal(1979~2009 average: 25.8) and most of these occurred during the months of July to October. Most TCs in 2009 was formed over the northern Philippines and the eastern part of the WNP and they moved towards the South China Sea and the east of Japan, resulting in less TC affecting the East China Sea and Korea. The TC activity in 2009 is modulated by the large-scale circulations induced by the El $Ni{\tilde{n}}o$ and vigorous convection activity over the WNP. As the general characteristics of El $Ni{\tilde{n}}o$ year, the difference in sea surface temperature between the central Pacific and the eastern Pacific causes an anomalous westerly winds, expanding the WNP monsoon trough farther eastward. Accordingly, TC formation has relatively increased in the east part of the WNP. Active convection activities over the subtropical western Pacific excite a Rossby wave propagating from the South China Sea to mid-latitudes, resulting in an anomalous easterly steering flow in the South China, anomalous northwesterly over the East China Sea and Korea, and anomalous southwesterly over the east of Japan. Summing up, the TCs cannot enter the East China Sea and Korean region and instead they move towards the South China Sea or south-east of Japan. There were no effects of TCs in Korea in 2009. It is anticipated that this study which analyzed unusual TC activity and large-scale circulations in 2009 would help the predictability of TC effects to increase according to climate change in the East Asia.