• Title/Summary/Keyword: 강판 보강 공법

Search Result 35, Processing Time 0.026 seconds

Seismic Retrofitting of Existing Reinforced Concrete Columns Using Binding Column Method (외부부착형 BCM공법으로 보강된 철근콘크리트 기둥의 내진보강)

  • Hur, Moo-Won;Park, Tae-Won;Lee, Sang-Hyun;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.119-126
    • /
    • 2022
  • This study proposed a BCM(Binding Column Method) that can reinforce the insufficient seismic force of piloti buildings that are not designed for seismic resistance. In addition, 4 reinforcement specimens and 1 reference specimen were manufactured for the proposed seismic reinforcement method. The effect of improving seismic performance before and after reinforcement was examined through repeated loading tests. As a result of experiment, seismic reinforcement specimen with BCM system showed hysteretic characteristics of a large ellipse with great energy dissipation ability and increased strength and stiffness, while reference specimen showed rapid reduction in strength and brittle shear failure column. In addition, it can be seen that the reinforcing effect is improved as the gap is narrow, the torque is large, and the thickness of the L-shaped steel sheet is thicker. The SC4 specimen showed the best seismic performance reinforcement effect.

Investigation on Adhesive Properties depending on the Environmental Variation of the Steel Plate Adhesive Strengthening Method by the Epoxy Resin (에폭시 수지 접착 강판보강공법의 환경 변화에 따른 부착 특성 검토)

  • Han, Cheon-Goo;Byun, Hang-Yong;Park, Yong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.107-113
    • /
    • 2007
  • This study is to investigate adhesive properties depending on the temperature, humidity, and freeze-thraw of the Steel plate adhesive strengthening method by the epoxy resin. The results are summarized as following. For the temperature variation, the debonding failure appear only after 1 cycle of temperature varoation because the coefficient of thermal expansion of the epoxy resin is comparatively large, and the bonding strength is decreased. The deformation properties and ultrasonic pulse velocity on each materials are similar until 4 cycles on the dry and moisture test. As the freeze-thraw test, the epoxy resin is degraded easily subjected to freeze-thaw cycle, comparatively easy, so the debonding failure may occur in short term because of the freeze-thaw repeatition.p

Seismic Performance Enhancement of Reinforced Concrete Bridge Piers wrapped with Prestressed Steel Jacket by the Quasi-Static Test (프리스트레스트된 강판으로 보강된 철근콘크리트 교각의 준정적 실험에 의한 내진 성능 향상 연구)

  • Choel, Beak-Min;Chung, Young-Soo;Choi, Eun-Soo;Yang, Dong-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.77-80
    • /
    • 2008
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. This research aims at evaluating the seismic performance of reinforced concrete bridge piers with lap-spliced longitudinal steels, which were strengthened with prestressed steel jacket in the plastic hinge region. Quasi-static test was used to investigate the seismic performance enhancement of RC test specimens. Conventional method applied mortar grouting inside steel jacket, but this research did not apply mortar grouting inside steel plate. Four test specimens in an aspect of 3.5 were constructed with 400 mm in diameter and 1600 mm in height. Test parameters are the lap splice of longitudinal reinforcing steels and thickness of steel jacket.

  • PDF

The effects of stability of the tunnel reinforced by rebar steel pipe (철근보강형강관이 적용된 터널의 안정성효과에 대한 연구)

  • Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.389-397
    • /
    • 2010
  • This paper presents the effects of the tunnel stability using rebar steel pipe which is the steel pipe reinforced by rebar. In order to carry out this research, not only the theoretical and experimental study for bending stiffness of normal steel pipes and rebar steel pipes but also numerical analysis of tunnel stability are performed. It is clearly found from the results that 65% of bending stiffness of the rebar steel pipe is larger than that of the normal steel pipe. The results obtained from the numerical analysis of tunnel stability show that about 10% of tunnel stability is increased in case of the rebar steel pipe. The rebar steel pipe, therefore, may be very useful to develope the tunnel stability economically.

An Experimental Study on the Placed Steel-Plate Cell Method for Construction of Seawall (호안조성용 거치식 강판셀공법의 실험적 연구)

  • Park, Yong Myung;Oh, Sung Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.249-257
    • /
    • 1997
  • This study will present the experimental research on the establishment of design considerations and structural integrity of the placed steel-plate cell methods for seawall and waterbreak, which have some benefits in the aspects of construction cost, time and equipments compared with the existing methods. The behavior of steel-plate cell structure is complicate due to stiffeners and cell-arc junction. There is also an ambiguity on lateral pressure by cell and arc filler. To resolve such problems, full scale cell $(D11.0^m{\times}H14.0^m{\times}12t)$ has been designed and fabricated, then placed on the seabed and filled. The strain measurement has also been performed to build up the design technology together with numerical analysis.

  • PDF

A Study on the Strength and the Deformation Capacity of RC Beams Strengthened with Aramid Fiber Sheet (아라미드 섬유쉬트로 휨보강한 RC보의 강도성능 및 변형성능에 관한 고찰)

  • 이현호;구은숙
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.151-158
    • /
    • 1998
  • 최근 들어 구조물을 보강하는 방법으로 강판 또는 섬유쉬트를 외부에 부착시키는 공법이 많이 사용되고 있다. 섬유쉬트 중에서 가장 널리 사용되는 것은 탄소섬유쉬트이지만, 성능면에서 뒤지지 않고 가격면에서는 오히려 유리한 아라미드섬유쉬트에 관한 연구는 전무한 실정이다. 본 연구에서는 아라미드섬유쉬트로 휨보강한 RC보의 파괴양상 및 강도성능, 변형성능을조사하고, 여섯 개의 보강변수에 대한 보강효과를 조사하였다. 인장철근비, 보강길이, 보강겹수, 앵커볼트 정착 유무가 각각 다른 16개의 실험체와 밑면 마감처리 및 부재손상 여부가 다른 2개의 실험체, 그리고 이들 보강 실험체의 비교 근거가 되는 비보강 실험체 2개를 실험하여 그 특성을 연구하였다. 실험결과, 보강성능과 파괴양상에 가장 큰 영향을 미치는 변수는 보강길이로 나타났다. 보강겹수도 어느 정도의 영향을 미치는 것으로 나타났으나 그외 다른 변수들의 영향은 미비한 것으로 판단된다.

Axial Behavior of Reinforced Concrete Columns Externally Strengthened with Unbonded Wire Rope and T-Shaped Steel Plate (와이어로프와 T 강판으로 비부착 보강된 철근콘크리트 기둥의 중심 축하중 거동)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • An improved unbonded-type column strengthening procedure using wire rope and T-shaped steel plate units was proposed. Eight strengthened columns and an unstrengthened control column were tested under concentric axial load. The main variables considered were the volume ratio of wire rope and the flange width and configuration of T-shaped steel plates. Axial load capacity and ductility ratio of columns tested were compared with predictions obtained from the equation specified in ACI 318-05 and those of conventionally tied columns tested by Chung et al., respectively. In addition, a mathematical model was proposed to evaluate the complete stress-strain relationship of concrete confined by the wire rope and T-plate units. Test results showed that the axial load capacity and ductility of columns increased with the increase of the volume ratio of wire rope and the flange width of T-plates. In particular, at the same lateral reinforcement index, a much higher ductility ratio was observed in the strengthened columns having the volume ratio of wire rope above 0.0039 than in the tied columns. A mathematical model for the stress-strain relationship of confined concrete using the proposed strengthening procedure is developed. The predicted stress-strain curves were in good agreement with test results.

Experimental Study on the Flexural Performance of Steel Beams Reinforced by AFRP Sheets (아라미드 섬유 쉬트를 이용한 철골 보 부재의 휨 보강 성능에 관한 실험적 연구)

  • Kim, Kang Seok;Nah, Hwan Seon;Kim, Kang Sik;Lee, Hyeon Ju;Lee, Kang Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.61-69
    • /
    • 2011
  • Fiber Reinforced Plastic (FRP) sheets have been widely used to retrofit and rehabilitate RC structures, while in case of retrofitting steel structures, there are no codes and researches. It stems from configuration of member and characteristics of bonding behavior. This study focused on the static behavior of steel beams reinforcement by AFRP sheets. The main objective of the experimental programme was the evaluation of the force transfer mechanism, the increment of the beam load carrying capacity and the bending stiffness. A bending test was conducted on a H-shaped steel beam, with aramid FRP sheets bonded to its flanges. The mid-span deflection and the strain from three points along AFRP sheets were recorded Test results exhibit that the increment of the load-carrying capacity with reference to a mid-span deflection level of 15 mm(1/125mm of the clear span) was equal to 9.4% and for the two layers case, an elastic stiffness increment is slightly higher than one layer case.

Reinforcement Effect of Reinforced Concrete Beams Strengthened with Grid-type Carbon Fiber Plastics (격자형 탄소섬유로 보강한 R/C보의 보강효과)

  • Jo, Byung-Wan;Tae, Ghi-Ho;Kwon, Oh-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.377-385
    • /
    • 2003
  • Flexural characteristics of the R.C beams strengthened with newly-developed grid-type carbon fiber plastics(CFRP-GRIDS) were investigated. The tests were conducted under the four-points load to the failure to investigate the strengthening effects of CFRP-GRIDS on the beams. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly, the appropriate area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

Axial Load Behavior of Concrete Cylinders Confined with Fiber-Sheet and Steel-Plate Composites Plate (FSP) (섬유-강판 복합플레이트로 보강된 콘크리트 압축부재의 압축성능)

  • Cho, Baik-Soon;Choi, Eunsoo;Chung, Young-Soo;Kim, Yeon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.331-340
    • /
    • 2011
  • The application of newly developed fiber-sheet and steel-plate composite plate (FSP) as a means of improving strength and ductility capacity of concrete cylinders under axial compression load through confinement is investigated experimentally in this study. An experimental investigation involves axial load tests of two types of FSP strengthening material, two anchoring methods, and three concrete strengths. The FSP-confined cylinder tests showed that FSP provided a substantial gain in compressive strength and deformability. The performance of FRP-confined cylinders was influenced by type of the FSP strengthening material, the anchoring method, and concrete compressive strength. The FSP failure strains obtained from FSP-confined cylinder tests were higher than those from FRP-confined cylinder tests. The magnitude of FSP failure strain was related to the FSP composite effectiveness. The effects of FSP confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, radial, and volumetric strains. From the observations obtained in this investigation, it is believed that FSP is one of the best solutions for the confinement of concrete compressive members.