• Title/Summary/Keyword: 강체 롤

Search Result 5, Processing Time 0.019 seconds

Vibration Behavior of a Rotating Brush Roll in Contact with a Solid Roll (강체롤과 접촉 회전하는 브러시롤의 진동 현상)

  • 허주호
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.499-509
    • /
    • 1997
  • During the process of oxide removal from work rolls in sheet metal manufacture, filamentary brushes frequently exhibit a bouncing or chatter behavior. The dynamics of this phenomenon is investigated through the development of expressions for the non-linear contact stiffness between the brush and the roll. With formulation of simple structural models, the time responses in the presence and absence of friction under random excitation are investigated. Possible solutions for the minimization or avoidance of this bouncing or chatter problem are also suggested.

  • PDF

An Analysis of High Speed Forming Using the Explicit Time Integration Finite Element Method(II) - Application to High Speed Rolling - (엑스플리시트 시간 적분 유한 요소법을 이용한 고속 성형 해석(II) - 고속 압연 해석)

  • 유요한;정동택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1551-1562
    • /
    • 1991
  • 최근까지 발표된 유한 요소법을 이용한 압연 해석 관련 주요 논문들을 정리해 보면 다음과 같다. Li와 Kobayashil는 강소성 유한 요소법(rigidplastic finite element method)을 여러가지 마찰조건에 대하여 해석하였다. 이때 압연롤은 강체 (rigid body)로 시편은 가공경화(workhardening)를 동반한 강소성체로 모델링하였다. Hwang과 Kobayashi는 강소성 유한 요소법을 이용한 평면 변형 압연에서 재료 손실을 최소화하는 예비 성형체(preform)의 설계에 대한 연구를 수행하였다. 이 경우에도 역시 압연롤은 강체로 시편은 가공 경화를 동반한 강소성체와 완전 소성체로 모델링 되었으나, 고착(sticking) 마찰 조건에 대해서만 해석을 수행하였다. Mori와 Osak- ada 그리고 Oda는 약간 압축성이 있는 재료의 평면 변형 압연에 대하여 연구하였다. 이때 압연롤은 강체로 시편은 가공 경화를 동반한 강소성체로 모델링 되었으며 경계 면에서는 Coulomb 마찰을 고려하였다. 이밖에도 오일러(Eulerian) 수식화를 이용한 Dawson과 Thompson, Berman의 해석 결과가 있으며, 또 폭 방향의 변형까지를 고려한 Li와 Kobayashi, Mori와 Osakada의 3차원 해석 결과가 있다.

A Numerical Study on Dynamic Characteristics of Counter-Rotating Rigid/Deformable Rolls in Press Contact (압착되어 회전하는 강체/변형 롤의 동적 특성에 관한 수치해석 연구)

  • Lee, Moon-Kyu;Lee, Sang-Hyuk;Hur, Nahm-Keon;Seo, Young-Jin;Kim, In-Cheol;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.869-876
    • /
    • 2011
  • It is important to analyze the dynamic behavior of counter-rotating rigid/deformable rolls in the roll-coating process, because the stability of the process is affected by the dynamic characteristics. In the present study, the effects of material property, angular velocity, and gap size on the contact pressure and contact shape of the deformable roll are numerically investigated. The behavior of two rolls with a negative gap was analyzed using the finite element method, and the material property of the deformable roll was applied with the Mooney-Rivlin coefficients of the hyper-elastic model. The contact shape is affected by the gap size, and the contact pressure mainly depends on the stiffness of the deformable roll and the gap size. To maintain a negative gap between two rolls, controls such as load and displacement controls must be used. The results indicate that displacement control can reduce the instability.

Investigation of Unbalanced Mass of a Work Roll in a Cold Rolling Mill (냉간 압연기에서 작업롤의 질량 불평형에 관한 연구)

  • Kim, Young-Deuk;Kim, Chang-Wan;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.429-435
    • /
    • 2012
  • An abrasion due to continuous friction between a work roll and strip causes the mass of the work roll to be unbalanced in the rolling process. We developed a mathematical model for the rolling mill considering the unbalanced mass and verified the model experimentally. The work roll was approximated as a rigid rotor with eccentricity, and the effect of the unbalanced mass on chatter vibration was investigated. The joint forces computed by quasistatic analysis were applied to the work roll in the rolling mill. Transient responses were obtained, and frequency analysis was performed by solving equations of motion using a direct integration method. Horizontal vibrations were more strongly affected by eccentricity than vertical vibrations. In the horizontal direction, a small eccentricity of 1% of the work roll radius considerably increased the amplitude of the chatter frequency.

Flutter Mechanism Analysis for Firefly Export Model (반디호 수출형 시제기에 대한 플러터 매커니즘 분석)

  • Paek, Seung-Kil;Lee, Sang-Wook
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • In this study was made the flutter analysis for the export model of Firefly(Bandi-ho), the small canard aircraft. Stiffness model based on internal load generation finite element model was generated. Mass model based on the weight DB for weight control was generated. Aerodynamic model based on Doublet Lattice Method was generated. Preliminary flutter analysis was made. Based on it, major vibration modes are identified and experimentally obtained via the ground vibration test. The obtained normal mode frequencies were used to correlate the finite element model. Flutter analysis was made again and major flutter mechanisms were summarized. The most important flutter root was identified as a coupled root between rigid body roll mode and anti-symmetric wing pitching mode.

  • PDF