• Title/Summary/Keyword: 강재로 구속된 프리스트레스트 콘크리트 합성거더

Search Result 7, Processing Time 0.024 seconds

Experimental Study for the Development of Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 개발을 위한 실험연구)

  • Kim, Jung Ho;Park, Kyung Hoon;Hwang, Yoon Koog;Choi, Young Min;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.593-602
    • /
    • 2002
  • A new type of bridge superstructures referred to as Steel-Confined Prestressed Concrete Girder (SCP Girder) was developed, which is composed of concrete, steel plate, and prestressing tendon. The girder may maximize structural advantages of these components; thus, long span bridges with low height girder may be constructed. For the effective design and fabrication of the gilder, the design software program was developed and the process of fabrication established. The experimental girder designed using the program was manufactured in actual size to confirm the fabric ability of the girder. Propriety of design, structural safety, and applicability of the gilder were verified through the load test.

A Study on the Static and Fatigue Behavior of Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 정적 및 피로거동)

  • Kim, Jung Ho;Park, Kyung Hoon;Hwang, Yoon Koog;Lee, Sang Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.725-736
    • /
    • 2004
  • A new type of girder, called steel-confined prestressed concrete girder (SCP girder), has been developed, which maximizes the structural advantages of concrete, steel, and PS tendon, and improves on the shortcomings of steel plate girder, PSC I-girder, and preflex girder bridge for use in the construction of middle- or long-span bridges. To verify the propriety of design, structural safety, and applicability of this girder, a static load test was carried out (Kim et al.., 2002). Since the main damage typically sustained by steel bridges results from the fatigue caused by the repetition of traffic loads, fatigue safety must therefore be guaranteed in applying the SCP girder in the construction of real bridges. In this study, a fatigue test was carried out to investigate fatigue behavior and provide basic data for fatigue design. Based on the fatigue test, the fatigue safety of the girder was estimated. For the fatigue test, 10-m specimens were designed for a standard-design truckload (DB-24). A static load test was also performed before the fatigue test to analyze the structural behavior of the specimens. After the fatigue test, outer steel plates were removed to observe the condition of the concrete in the girder.

Development of Steel Confined Prestressed Concrete Girder (I형상의 강재로 구속된 프리스트레스트 콘크리트 충전 합성거더 시공기술(SCP 합성거더))

  • 엄영호;황윤국;김정호;권책;이우종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.601-608
    • /
    • 2003
  • A new type of bridge superstructures referred to as Steel-confined Prestressed Concrete Girder (SCP Girder) was developed, which is composed of concrete, steel plate, and prestressing tendon. The girder may maximize structural advantages of these components : thus, long span bridges with low height girder may be constructed. For the effective design and fabrication of the girder, the design software program was developed and the process of fabrication established. The experimental girder designed using the program was manufactured in actual size to confirm the fabric ability of the girder. Propriety of design, structural safety, and applicability of the girder were verified through the load test.

  • PDF

An Experimental Study for the Application of Steel Anchorage Zone in Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 강재 정착부 적용을 위한 실험적 고찰)

  • Kim, Jung-Ho;Lee, Sang-Yoon;Hwang, Yoon-Gook;Park, Kyung-Hoon;Oh, Chang-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.455-458
    • /
    • 2005
  • The Steel-Confined Prestressed Concrete Girder(SCP Girder) has been developed, which maximizes structural advantages of components (concrete, steel plate and tendon) and can be used to construct the middle or long span bridge with low-height girder. And recently, a continuous beam type of SCP Girder has been being developed to decrease size and self weight of girder in comparison with a simply-supported type. In this study, as part of developing the continuous beam type of SCP Girder, a new type of anchorage zone is proposed in order to address tendons effectively and decrease section size of SCP Girder efficiently. And also, the experimental test was carried out using a real scale specimen to examine the behavior of proposed anchorage zone.

  • PDF

Design of Additional Tendon Force and Evaluation of Resistant Moment for Prestressed Concrete Composite Section (프리스트레스트 콘크리트 합성단면에 도입되는 추가 긴장력 설계와 저항모멘트 평가)

  • Yon Jung-Heum;Kim Do-Goon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.335-344
    • /
    • 2004
  • A general composite section of precast and cast-in-place concrete with prestressed and nonprestressed reinforcements was analyzed to calculate residual stresses and loss of prestressing force caused by internal constraints of concrete long-term deformation. From the analytical results, equations to design additional prestressing force and to evaluate resistant moment of the composite section were proposed. The equations shows that the additional prestressing force can be over-estimated if the loss rate of the first prestressing force is over-estimated from the lumped sum of a design code. The analytical procedure with the proposed equations has been applied to a composite section using the AASHTO Type 5 girder. The loss rates of the additional prestressing force appling to the precast concrete girder was less than those appling to the composite girder. However, the resistant moment of the additional prestressing force on the composite girder was much larger than that on the precast concrete girder. The additional prestressing force appling to the composite section was very effective for strengthening of the prestressed concrete composite girder.