• 제목/요약/키워드: 강인시스템

검색결과 1,898건 처리시간 0.028초

피치변경을 이용한 화자인식 시스템 (The Speaker Recognition System using the Pitch Alteration)

  • 정종순;배명진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.115-118
    • /
    • 2002
  • 화자인식에 사용하는 파라미터는 화자의 특징을 충분히 표현함과 더불어 발성 시마다 변동이 작은 것이 바람직하다. 즉, 파라미터의 화자내의 변이보다 화자간의 변이가 큰 특성을 가져야 화자간의 구분이 용이하다. 또한, 화자간 오류를 최소화하기 위해 화자간 구별이 뚜렷한 특징 파라미터뿐만 아니라 분별력이 뛰어난 인식방법도 필요하다. 최근의 실험결과들을 살펴보면 발성기관에 의한 정적인 특징뿐 아니라, 발성습관에 의한 동적인 특징을 같이 이용함으로써 보다 정확한 인식결과를 얻고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 다음과 같이 제안한다. 음성의 특징벡터로 운율정보 사용을 제안한다 현재 화자인식 시스템에서 일반적으로 많이 사용되고 있는 특징벡터는 스펙트럼 정보를 모델링하고 있는 것으로 비잡음 환경에서 종은 성능을 보이고 있다. 그러나 잡음 환경변화에 크게 왜곡되며 인식율이 현저하게 저하되는 문제점이 나타난다. 그러므로 본 논문에서는 음성의 동적 변화를 측정할 수 있는 세그먼트로 분할한 피치열을 변경하여 인식의 특징패턴으로 사용한다. 이는 문장의 운율정보를 보여주는 것으로 소음환경에서 강인한 특성을 보였다.

  • PDF

가변어휘 단어 인식에서의 미등록어 거절 알고리즘 성능 비교 (Performance Comparison of Out-Of-Vocabulary Word Rejection Algorithms in Variable Vocabulary Word Recognition)

  • 김기태;문광식;김회린;이영직;정재호
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.27-34
    • /
    • 2001
  • 발화 검증이란 등록된 단어 목록 이외의 단어가 입력되었을 때, 미등록된 단어는 인식할 수 없는 단어임을 알려주는 기능으로써 사용자에게 친숙한 음성 인식 시스템을 설계하는데 중요한 기술이다. 본 논문에서는 가변어휘 단어 인식기에서 최소 검증 오류를 나타낼 수 있는 발화 검증 시스템의 알고리즘을 제안한다. 우선, 한국전자통신연구원의 PBW(Phonetically Balanced Words) 445DB를 이용하여 가변어휘 단어 인식에서의 미등록어 거절 성능을 향상시키는 효과적인 발화 검증 방법을 제안하였다. 구체적으로 특별한 훈련 과정이 없이도 유사 음소 집합을 많이 포함시킨 반음소 모델을 제안하여 최소 검증 오류를 지니도록 하였다. 또한, 음소 단위의 null hypothesis와 alternate hypothesis의 비를 이용한 음소 단위의 신뢰도는 null hypothesis로 정규화해서 강인한 발화 검증 성능을 보여 주었으며, 음소 단위의 신뢰도를 이용한 단어 단위의 신뢰도는 등록어와 미등록어 사이의 분별력을 잘 표현해 주었다. 이와 같이 새로이 제안된 반음소 모델과 발화 검증 방법을 사용했을 때, CA (Correctly Accept for Keyword: 등록어를 제대로 인정한 경우)는 약 89%, CR (Correctly Reject for OOV (Out-of-Vocabulary): 미등록어에 대해 거절한 경우)은 약 90%로써, 기존 필터 모델을 이용한 방법보다 미등록어 거절 성능이 ERR (Error Reduction Rate) 측면에서 약 15-21% 향상됨을 알 수 있었다.

  • PDF

산업용 매니퓰레이터의 작업 성능 향상을 위한 영상 기반 물체 인식에 관한 연구 (Study on vision-based object recognition to improve performance of industrial manipulator)

  • 박인철;박종호;류지형;김형주;정길도
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.358-365
    • /
    • 2017
  • 본 논문에서는 산업용 매니퓰레이터의 작업 성능 향상을 위하여 영상 기반의 물체 인식 방법을 제안하였다. 기존 산업용 매니퓰레이터의 경우 대부분 산업 현장에서 제공하는 정보만을 활용해 산업용 매니퓰레이터를 동작시킴으로써 작업 물체 틀어짐 등에 대한 문제를 고려하지 않고 있기에 보다 안정적인 작업을 수행하는데 있어 문제점이 발생할 수 있다. 본 연구에서 사용된 물체인식 방법은 기존의 Harris Coner 알고리즘의 인식률 향상을 위하여 HSV채널로부터 색상정보를 포함한 V채널과 배경분리가 용이한 S채널을 분리 한 뒤 이를 바탕으로 Otsu Thresholding 기법을 적용하였다. 이를 통해 작업 물체를 보다 정확하게 인식하고 만약 작업 물체가 외부요인에 의하여 정확한 위치에 놓여있지 않거나 뒤틀어져 있는 경우 신속하게 확인한 후 원활한 작업을 위해 산업용 매니퓰레이터의 동작 제어를 수행하는 것으로 실제 산업용 매니퓰레이터에 적용한 후 실험을 통하여 이를 검증하였다. 이는 실제 공장 시스템에서 갑작스런 사람의 유입 혹은 외부요인에 의한 작업 물체의 변화 등의 문제점에 대하여 강인하고 유연하게 대처하며 오류로 인한 작업공정의 중단을 사전에 방지함으로서 전체시스템 가동시간의 효율성을 증대시키는 결과를 가져올 수 있다.

시각 음성인식을 위한 영상 기반 접근방법에 기반한 강인한 시각 특징 파라미터의 추출 방법 (Robust Feature Extraction Based on Image-based Approach for Visual Speech Recognition)

  • 송민규;;민소희;김진영;나승유;황성택
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.348-355
    • /
    • 2010
  • 음성 인식 기술의 발전에도 불구하고 잡음 환경하의 음성 인식은 여전히 어려운 분야이다. 이를 해결하기 위한 방안으로 음성 정보 이외에 시각 정보를 이용한 시각 음성인식에 대한 연구가 진행되고 있다. 하지만 시각 정보 또한 음성과 마찬가지로 주위 조명 환경이나 기타, 다른 요인에 따른 영상잡음이 존재하며, 이런 영상잡음은 시각 음성 인식의 성능 저하를 야기한다. 따라서 인식 성능 향상을 위해 시각 특징 파라미터를 어떻게 추출하느냐는 하나의 관심분야이다. 본 논문에서는 HMM기반 시각 음성인식의 인식 성능 향상을 위한 영상 기반 접근방법에 따른 시각 특징 파라미터의 추출 방법에 대하여 논하고 그에 따른 인식성능을 비교하였다. 실험을 위해 105명에 화자에 대한 62단어의 데이터베이스를 구축하고, 이를 이용하여 히스토그램 매칭, 입술 접기, 프레임 간 필터링 기법, 선형마스크, DCT, PCA 등을 적용하여 시각 특징 파라미터를 추출하였다. 실험결과, 제안된 방법에 의해 추출된 특징 파라미터를 인식기에 적용하였을 때의 인식 성능은 기본 파라미터에 비해 약21%의 성능 향상이 됨을 알 수 있다.

YOLOv2 기반의 영상워핑을 이용한 강인한 오토바이 번호판 검출 및 인식 (Robust Motorbike License Plate Detection and Recognition using Image Warping based on YOLOv2)

  • 당순정;김응태
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.713-725
    • /
    • 2019
  • 번호판 자동인식(ALPR: Automatic License Plate Recognition)은 지능형 교통시스템 및 비디오 감시 시스템 등 많은 응용 분야에서 필요한 기술이다. 대부분의 연구는 자동차를 대상으로 번호판 감지 및 인식을 연구하였고, 오토바이를 대상으로 번호판 감지 및 인식은 매우 적은 편이다. 자동차의 경우 번호판이 차량의 전방 또는 후방 중앙에 위치하며 번호판의 뒷배경은 주로 단색으로 덜 복잡한 편이다. 그러나 오토바이의 경우 킥 스탠드를 이용하여 세우기 때문에 주차할 때 오토바이는 다양한 각도로 기울어져 있으므로 번호판의 글자 및 숫자 인식하는 과정이 훨씬 더 복잡하다. 본 논문에서는 다양한 각도로 주차된 오토바이 데이터세트에 대하여 번호판의 문자 인식 정확도를 높이기 위하여 2-스테이지 YOLOv2 알고리즘을 사용하여 오토바이 영역을 선 검출 후 번호판 영역을 검지한다. 인식률을 높이기 위해 앵커박스의 사이즈와 개수를 오토바이 특성에 맞추어 조절하였다. 그 후 기울어진 번호판을 검출한 후 영상 워핑 알고리즘을 적용하였다. 모의실험 결과, 기존 방식의 인식률이 47.74%에 비해 제안된 방식은 80.23%의 번호판의 인식률을 얻었다. 제안된 방법은 전체적으로 오토바이 번호판 특성에 맞는 앵커박스와 이미지 워핑을 통해서 다양한 기울기의 오토바이 번호판 문자 인식을 높일 수 있었다.

3.0 kW 고출력 발진 단일 모드 Yb 광섬유 레이저 (High-power Yb Fiber Laser with 3.0-kW Output)

  • 박종선;박은지;오예진;정훈;김지원;정예지;이강인;이용수;조준용
    • 한국광학회지
    • /
    • 제32권4호
    • /
    • pp.147-152
    • /
    • 2021
  • 본 논문에서는 최고 출력 3.0 kW 발진 단일 모드 이터븀(ytterbium, Yb) 첨가 광섬유 레이저에 대해 보고한다. 고출력 광섬유 레이저의 출력을 제한하는 주된 요소인 유도 라만 산란 문턱 값과 광섬유 내 온도 분포를 계산하고 이를 바탕으로 양방향 펌핑 구조의 단일 공진기 Yb 광섬유 레이저 시스템을 제작하였다. 그 결과 4.1 kW의 펌프 출력에서 최고 출력 3.0 kW의 레이저 빔을 얻을 수 있었고, 그때의 기울기 효율은 81.5%로 계산되었다. 최고 출력에서 측정된 출력 빔의 빔질(M2)은 1.26으로 단일 공간 모드 빔 출력 특성을 가지고 있음을 확인하였고, 유도 라만 산란 및 횡모드 불안정 현상은 관측되지 않았다. 본 연구에서 얻은 광섬유 레이저 출력 결과는 지금까지 국내에서 보고된 다이오드 레이저로 펌핑한 광섬유 레이저 출력 중 가장 높은 출력이며, 향후 더 높은 출력을 얻기 위한 방법에 대해 논의하고자 한다.

편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화 (A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing)

  • 이승현;김민영
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.253-263
    • /
    • 2013
  • 광학측정기법 중 주파수 스캐닝 간섭계는 기존 3차원 측정기법과 비교하여 광학 하드웨어 구조가 측정과정동안 고정되어 있어, 대물렌즈나 대상물체의 수직 스캐닝 없이 단지 광원의 주파수만 특정한 주파수 밴드내에서 스캐닝 하여 대상물체에 주사되므로, 우수한 광학 측정 성능을 보인다. 광원의 주파수를 변경하여 간섭계를 통해 간섭 영상을 획득한 후, 밝기 영상 데이터를 주파수 영역 데이터로 변환하고, 고속 푸리에 변환을 통한 주파수 분석을 이용하여 대상 물체의 높이 정보를 계측한다. 하지만, 대상물체의 광학적 특성에 기인한 광학노이즈와 주파수 스캐닝동안 획득되는 영상의 수에 따라 증가하는 영상처리시간은 여전히 주파수 스캐닝 간섭계의 문제이다. 이를 위해, 1) 편광기반 주파수 스캐닝 간섭계가 광학 노이즈에 대한 강인성을 확보하기 위해 제안되어진다. 시스템은 주파수 변조 레이저, 참조 거울 앞단의 ${\lambda}/4$ 판, 대상 물체 앞단의 ${\lambda}/4$ 판, 편광 광분배기, 이미지 센서 앞단의 편광기, 광섬유 광원 앞단의 편광기, 편광 광분배기와 광원의 편광기 사이에 위치하는 ${\lambda}/2$ 판으로 구성된다. 제안된 시스템을 이용하여, 편광을 기반으로한 간섭이미지의 대조대비를 조절할 수 있다. 2) 신호처리 고속화 방법이 간섭계 시스템을 위해 제안되며, 이는 그래픽 처리 유닛(GPU)과 같은 병렬처리 하드웨어와 계산 통합 기기 구조(CUDA)와 같은 프로그래밍 언어로 구현된다. 제안된 방법을 통해 신호처리 시간은 실시간 처리가 가능한 작업시간을 얻을 수 있었다. 최종적으로 다양한 실험을 통해 제안된 시스템을 정확도와 신호처리 시간의 관점으로 평가하였고, 실험결과를 통해 제안한 시스템이 광학측정기법의 실적용을 위해 효율적임을 보였다.

프로젝션 타입 고속 스핀 에코 영상 (Projection-type Fast Spin Echo Imaging)

  • 김휴정;김치영;김상묵;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • 제4권1호
    • /
    • pp.42-51
    • /
    • 2000
  • 목적: Projection-type Fast Spin Echo (PFSE) 영상 기법은 일반적인 Fast Spin Echo (FSE) 기법과 비교하여 환자의 움직임과 혈류에 강한 장점이 있는 반면. $T_2$ 대조도(contrast)를 조절하기가 어려운 단점이 있다. 본 연구에서는 PFSE의 대조도를 이론적으로 분석하였고 컴퓨터 모의실험을 통하여 다양한 effective echo time (TE) 을 갖는 일반적인 FSE와 비교, 분석하였다. 또한 인체 실험을 통하여 제안한 PFSE 영상기법으로 움직 임과 혈류에 강인한 $T_2$ 강조 영상을 얻을 수 있음을 보였다. 대상 및 방법: 본 연구에서는 1.OT 전신 MRI 시스템에서 새로운 k-space의 배치를 갖는 PFSE 펠스 시권스를 구현하여, PFSE와 FSE 방식의 $T_2$ 대조도를 컴퓨터 모의설험과 인체 실험을 통하여 비교, 분석하였다. 컴퓨터 모의실험에서는 서로 다른 $T_2$ 값을 갖는 팬텀을 구현하여 다양한 effective TE에 대한 FSE 영상과 PFSE 영상을 재구성하여 대조도를 비교하였다. 인체 설험에서는 multi-slice $T_2$ 강조 두부 영상을 PFSE와 FSE로 얻어 영상기법간의 $T_2$ 대조도를 비교하였다. 결과: 이론적인 분석에서 PFSE의 $T_2$ 대조도는 effective TE가 80-l00ms 정도의 FSE 영상과 등가하게 나타나 $T_2$ 강조 영상을 얻을 수 있을 것으로 판단되었다. 컴퓨터 모의실험에서 PFSE 재구성 영상은 effective TE가 96ms인 FSE 영상과 대조도가 비슷하게 나타났다. 인체 실험에 서도 PFSE 영상은 effective TE가 96ms인 FSE 영상과 비슷하게 나타났으며. PFSE 방법이 FSE 방법에 비하여 움직 엄과 혈류와 관련한 artifact에 강인함을 확인 할 수 었었다. 결론: PFSE 기법은 k-space의 극좌표계에서 서로 다른 각도를 갖는 여러 line틀을 다중 스핀 에코 기법으로 측정하는 방식이다. PFSE기법은 FSE와 비교하여 환자의 움직임과 혈류에 강한 장점이 있는 반면, $T_2$ 대조도를 조절하기가 어려운 단점이 있다. 본 연구에서는 PFSE 방식으로 FSE와 대등한 $T_2$ 대조도 ($T_2$ 강조 영상)를 얻을 수 있음을 이론과 컴퓨터 모의실험 밝히고, 인체 실험을 통하여 확인하였다.

  • PDF

딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석 (Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm)

  • 허재원;이창희;서두천;오재홍;이창노;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.387-396
    • /
    • 2024
  • 대부분의 고해상도 위성영상은 rational polynomial coefficients (RPC) 정보를 제공하여 지상좌표와 영상좌표 간 변환을 수행한다. 그러나 초기 RPC에는 기하학적 오차가 존재하여 ground control points (GCPs)와의 정합을 통해 보정을 수행하여야 한다. GCP chip은 항공정사영상에서 추출한 높이 정보가 포함된 작은 영상 패치(patch)이다. 많은 선행연구에서는 영역 기반 정합 기법을 사용하여 고해상도 위성영상과 GCP chip 간 정합을 수행하였다. 계절적 차이나 변화된 지역이 존재하는 영상에서는 화소값에 의존하는 정합이 어렵기 때문에 윤곽 정보를 추출하여 정합을 수행하기도 한다. 그러나 일반적으로 사용하는 canny 기법으로 정합에 용이한 윤곽을 추출하기 위해서는 위성영상의 분광 특성에 적절한 임계치를 설정해주어야 하는 문제가 존재한다. 따라서 본 연구에서는 위성영상의 지역별 특성에 둔감한 윤곽 정보를 활용하여 RPC 보정을 위한 정합을 수행하고자 한다. 이를 위해 딥러닝 기반 윤곽 정보 추출 네트워크인 pixel difference network (PiDiNet)를 활용하여 위성영상과 GCP chip의 윤곽맵(edge map)을 각각 생성하였다. 그 후 생성된 윤곽맵을 normalized cross-correlation과 relative edge cross-correlation의 입력데이터로 대체하여 영역 기반의 정합을 수행하였다. 마지막으로 RPC 보정에 필요한 변환모델 계수를 도출하기 위하여 data snooping 기법을 반복적으로 적용하여 참정합쌍을 추출하였다. 오정합쌍을 제거한 참정합쌍에 대해 root mean square error (RMSE)를 도출하고 기존에 사용하던 상관관계 기법과 결과를 정성적으로 비교하였다. 실험 결과, PiDiNet은 약 0.3~0.9 화소의 RMSE 값 분포를 보였으나 canny 기법에 비해 두꺼운 윤곽을 나타내어 일부 영상에서 미세하게 정확도가 저하되는 것을 확인하였다. 그러나 위성영상 내 특징적인 윤곽을 일관적으로 나타냄으로써 정합이 어려운 지역에서도 정합이 잘 수행되는 것을 확인하였다. 본 연구를 통해 윤곽 기반 정합 기법의 강인성을 개선하여 다양한 지역에서의 정합을 수행할 수 있을 것으로 예상된다.

손가락 정렬과 회전에 강인한 비 접촉식 손가락 정맥 인식 연구 (A Study on Touchless Finger Vein Recognition Robust to the Alignment and Rotation of Finger)

  • 박강령;장영균;강병준
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.275-284
    • /
    • 2008
  • 최근 개인의 정보 보호에 대한 중요성이 증가함에 따라 생체 인식 기술이 출입 통제 시스템 또는 개인 인증, 인터넷 뱅킹, ATM 기기 등 여러 응용에서 사용되어지고 있다. 손가락 정맥 인식이란 사람마다 고유한 손가락 정맥 패턴 정보를 사용하는 고 신뢰도의 생체 인식 기술이다. 본 연구에서는 비 접촉식 손가락 정맥 인식을 위한 새로운 장치 및 방법을 제안한다. 본 연구는 기존의 연구에 비해 다음과 같은 다섯 가지의 장점을 나타내고 있다. 첫째, 본 논문에서 제안하는 장비는 사용자의 손가락 정맥영상 취득 시, 손가락의 뒷면과 손가락 끝, 옆을 지지할 수 있는 최소한의 지지대만을 사용함으로써 사용자의 불쾌감을 최소화할 수 있다. 둘째, 손가락 정맥 영상을 취득하기 위한 카메라 앞에 45도 기울어진 핫 미러(hot mirror)를 사용함으로써, 손가락 정맥 영상 취득 장치의 두께를 줄일 수 있었다. 이는 핸드폰과 같이 두께에 제한이 있는 여러 응용 분야에서 널리 사용될 수 있음을 의미한다. 셋째, 본 연구에서는 LBP(Local Binary Pattern) 방법을 기반으로 손가락 정맥의 특징 정보를 추출함으로써 부분적으로 심하게 어둡거나 밝은 영역을 포함하는 균일하지 않은 조명의 영향을 줄일 수 있었다. 넷째, 비 정맥 영역을 인식에 사용하지 않음으로써 인식 성능을 보다 향상 할 수 있었다. 다섯째, 추출된 손가락 정맥 코드를 기 등록된 코드와 매칭 시, 수평 및 수직방향 비트 이동 방법을 사용함으로써 영상 취득 시 손가락의 움직임과 회전에 의한 본인데이터의 변화도를 줄일 수 있었다. 실험 결과, 본 논문에서 제안하는 손가락 정맥 인식방법의 EER(Equal Error Rate)은 0.07423%였고 전체 처리 시간은 91.4ms였다.