Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.33-33
/
2011
현재 우리나라 기상청에서는 단기, 중기 및 장기 예보자료를 생산하고 있으나, 이들 자료는 단순히 일기 예보에 치중되어 생산되고 있어 강우-유출해석에 직접 적용하기에는 시 공간 해상도가 크고 정량적 강수예측의 정확도가 미흡하다. 이에 기상 및 수자원분야에서는 정확도 개선을 위해서 관측강우와 예측강우의 비교 분석을 통해 편차를 산정하여 예측강수를 보정하는 기법을 적용하고 있다. 다만, 기존의 편차보정방법은 보정인자로 강수량만을 고려하기 때문에 정확도 개선에는 한계가 존재한다. 따라서 본 연구에서는 수자원분야의 수치예보자료의 정확도를 향상시키기 위해 규모, 발생영역에 대한 강수의 특성을 고려한 강수예측자료의 편차보정 방법을 제안하고 이를 강우-유출모델에 적용하여 개선정도를 평가하고자 한다. 이에 적용유역을 춘천댐상류유역으로 선정하고 국내 기상청의 RDAPS(Regional Data Assimilation and Prediction System)수치예보자료, 지점강우자료, radar자료의 수문기상자료와 지형자료를 수집하였다. 화천, 평화의 댐 일부 미계측유역의 관측자료로 radar자료를 이용하였다. 이상의 자료를 토대로 강우강도 및 규모, 영향범위를 고려한 예측강우의 편차를 산정하여 RDAPS 수치예보자료의 정확도를 개선하고 평가하였다. 이는 해당 유역뿐만 아니라 주변 유역의 정보를 이용하여 예측강우의 발생위치에 대한 오차를 고려한 방법으로, 각 영역별로 예측강우의 편차보정계수를 산정하여 적용하였다. 또한, 이전시간대의 강우 편차에 대한 오차를 줄이기 위해 정규분포방법을 이용한 Ensemble 편차보정계수를 산정하고 최근 생산된 수치예보자료에 적용하여 확률예측강우를 산정하였다.
Journal of Korean Society of Environmental Engineers
/
v.30
no.1
/
pp.69-78
/
2008
An integration study of watershed model(HSPF, Hydological Simulation program-Fortran) and reservoir water quality model (CE-QUAL-W2) was performed for the evaluation of turbid water management in Yongdam reservoir. The watershed model was calibrated and analyzed for flow and suspended solid concentration variation during rainy period, their results were inputted for reservoir water quality model as time-variable water temperature and turbidity. Results of the watershed model showed a good agreement with the field measurements of flow and suspended solid. Also, results of the reservoir water quality model showed a good agreement with the filed measurements of water balance, water temperature and turbidity using linkage of the watershed model results. Integration of watershed and reservoir model is an important in turbid water management because flow and turbidity in stream and high turbidity layer in reservoir could be predicted and analyzed. In this study, the integration of HSPF and CE-QUAL-W2 was applied for the turbid water management in Yongdam reservoir, where it is evaluated to be appliable and important.
Kareem, Kola Yusuff;Seong, Yeonjeong;Jung, Younghun
Journal of Korean Society of Disaster and Security
/
v.14
no.4
/
pp.17-27
/
2021
Streamflow prediction is a very vital disaster mitigation approach for effective flood management and water resources planning. Lately, torrential rainfall caused by climate change has been reported to have increased globally, thereby causing enormous infrastructural loss, properties and lives. This study evaluates the contribution of rainfall to streamflow prediction in normal and peak rainfall scenarios, typical of the recent flood at Piney Resort in Vernon, Hickman County, Tennessee, United States. Daily streamflow, water level, and rainfall data for 20 years (2000-2019) from two USGS gage stations (03602500 upstream and 03599500 downstream) of the Piney River watershed were obtained, preprocesssed and fitted with Long short term memory (LSTM) model. Tensorflow and Keras machine learning frameworks were used with Python to predict streamflow values with a sequence size of 14 days, to determine whether the model could have predicted the flooding event in August 21, 2021. Model skill analysis showed that LSTM model with full data (water level, streamflow and rainfall) performed better than the Naive Model except some rainfall models, indicating that only rainfall is insufficient for streamflow prediction. The final LSTM model recorded optimal NSE and RMSE values of 0.68 and 13.84 m3/s and predicted peak flow with the lowest prediction error of 11.6%, indicating that the final model could have predicted the flood on August 24, 2021 given a peak rainfall scenario. Adequate knowledge of rainfall patterns will guide hydrologists and disaster prevention managers in designing efficient early warning systems and policies aimed at mitigating flood risks.
Journal of Korean Society of Environmental Engineers
/
v.37
no.2
/
pp.126-135
/
2015
Increase of delivery effect of pollutant loads and surface runoff due to urbanization of catchment area results in serious environmental problems in receiving urban streams. This study aims to develop integrated stormwater management system to assist efficient urban stream flow and water quality control using information from the Storm Water Management Model (SWMM), real time water level and quality monitoring system and remote or automatic treatment facility control system. Based on field observations in the study site, most of the pollutant loads are flushed within 4 hours of the rainfall event. SWMM simulation results indicates that the treatment system can store up to 6 mm of cumulative rainfall in the study catchment area, and this means any type of normal rainfall situation can be treated using the system. Relationship between rainfall amount and fill time were developed for various rainfall duration for operation of stormwater treatment system in this study. This study can further provide inputs of river water quality model and thus can effectively assist integrated water resources management in urban catchment and streams.
Research in dam inflow prediction has actively explored the utilization of data-driven machine learning and deep learning (ML&DL) tools across diverse domains. Enhancing not just the inherent model performance but also accounting for model characteristics and preprocessing data are crucial elements for precise dam inflow prediction. Particularly, existing rainfall data, derived from snowfall amounts through heating facilities, introduces distortions in the correlation between snow accumulation and rainfall, especially in dam basins influenced by snow accumulation, such as Soyang Dam. This study focuses on the preprocessing of rainfall data essential for the application of ML&DL models in predicting dam inflow in basins affected by snow accumulation. This is vital to address phenomena like reduced outflow during winter due to low snowfall and increased outflow during spring despite minimal or no rain, both of which are physical occurrences. Three machine learning models (SVM, RF, LGBM) and two deep learning models (LSTM, TCN) were built by combining rainfall and inflow series. With optimal hyperparameter tuning, the appropriate model was selected, resulting in a high level of predictive performance with NSE ranging from 0.842 to 0.894. Moreover, to generate rainfall correction data considering snow accumulation, a simulated snow accumulation algorithm was developed. Applying this correction to machine learning and deep learning models yielded NSE values ranging from 0.841 to 0.896, indicating a similarly high level of predictive performance compared to the pre-snow accumulation application. Notably, during the snow accumulation period, adjusting rainfall during the training phase was observed to lead to a more accurate simulation of observed inflow when predicted. This underscores the importance of thoughtful data preprocessing, taking into account physical factors such as snowfall and snowmelt, in constructing data models.
Journal of the Korea Society of Computer and Information
/
v.29
no.3
/
pp.67-74
/
2024
In this paper, we present a study aimed at analyzing how different rainfall measurement methods affect the performance of reservoir water level predictions. This work is particularly timely given the increasing emphasis on climate change and the sustainable management of water resources. To this end, we have employed rainfall data from ASOS, AWS, and Thiessen Network-based measures provided by the KMA Weather Data Service to train our neural network models for reservoir yield predictions. Our analysis, which encompasses 34 reservoirs in Jeollabuk-do Province, examines how each method contributes to enhancing prediction accuracy. The results reveal that models using rainfall data based on the Thiessen Network's area rainfall ratio yield the highest accuracy. This can be attributed to the method's accounting for precise distances between observation stations, offering a more accurate reflection of the actual rainfall across different regions. These findings underscore the importance of precise regional rainfall data in predicting reservoir yields. Additionally, the paper underscores the significance of meticulous rainfall measurement and data analysis, and discusses the prediction model's potential applications in agriculture, urban planning, and flood management.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1644-1648
/
2008
해안지역은 해수욕, 어패류의 수집 등의 각종 레크레이션에 있어 많은 사람들이 이용하는 공간이며, 해수는 해안지역에서 각종 활동 중 섭취할 가능성이 있으므로, 수질이 매우 중요하다고 할 수 있다. 이에 본 연구에서는 실제 해수욕장의 수치 모의(수리, 수문, 수질)를 통하여 우수 및 오수가 지표를 통해 해안으로 유입될 경우의 해안지역의 수질에의 영향에 관하여 연구하였다. 지표에서의 우수 유출 및 오수의 흐름을 수치해석은 MOUSE 모델을 사용하였으며 해안지역의 수치해석은 MIKE 3 모델을 사용하였다. 또한 수질 분석을 위하여 미생물의 증감에 영향을 주는 해당 지역의 기온, 수온, 일조량 등의 각종 인자를 구성하여 MIKE 3의 ECOLAB 모듈을 통하여 생물학적 분석을 수행하였다. 그 결과, 해수의 오염이 발생하면, 해수욕이 가능한 기간을 위주로 확인하였을 시, 미생물이 해수에 존재하는 시간은 연간 총 200시간 가량인 것으로 나타났으며, 강우시 해수의 오염이 발생할 시, 강우가 그친 뒤에도 미생물이 완전히 사멸할 때 까지 $4{\sim}6$시간의 정화기간이 필요한 것으로 나타났다. 그리고 첨두 오염 부하량은 비가 그친 직후에 나타나는 것으로 나타났으며 미생물의 해수 유입은 5mm 이상의 강우일 경우에 기준치 이상의 미생물이 발생하며, 해당 지역에 합류식 하수관거가 있을 시에 더욱 많이 발생하는 것으로 나타났다.
In this study, runoff simulation was carried out in order to derive operational improvement of small urban storm water pumping station under heavy storm rainfall conditions. The flood inflow hydrograph of Guri city heavy storm in July, 2001 was successfully simulated by HEC-HMS, a GIS-based runoff simulation model. For the runoff simulation, ArcView, as an effective GIS tool, was used to provide input data of the model such as land use data, soil distribution data and SCS runoff curve number.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.57-57
/
2022
국내의 댐·하천 설계기준은 다양한 수자원 시설물 설계 시에 활용되고 있으나, 강우사상에 대한 분석은 과거의 강우 사상에 대한 통계분석에 따라 수행되어 기후변화의 영향을 고려하지 않고 있다. 또한, 하천 설계기준에서는 홍수량 산정에 대한 방안을 명시한 바에 따르면, 홍수량 산정 표준지침에서 활용하는 빈도해석을 활용하는 방안 또는 강우-유출모형을 활용한 방안을 제시하고 있으나, 홍수량 산정 표준지침 역시 미래 강수 변화에 대한 구체적인 방안을 반영하지 않고 있는 실정이다. 전 세계적인 기후변화는 국내의 기후변동성을 증가시켜 극한강우사상의 빈도와 강도를 증대시키므로 이를 고려한 미래강우에 대한 분석이 필요한 시점이다. 일반적으로 기후 전망에 활용되는 전지구 모델(Global Climate Model; GCM)은 한반도의 복잡한 지형을 고려하기 어려우므로 지역적인 강제력을 보다 효과적으로 고려하기 위하여 지역기후모델(Regional Climate Model; RCM)을 사용하고 있다. 역학적으로 상세화 된 RCM은 비교적 고해상도의 자료를 제공하고 있으나, 강수량을 전반적으로 과소 추정하는 것으로 알려지고 있다. 본 연구에서는 지속시간 1-24시간 연최대 강우량(annual maximum rainfalls; AMRs)과 역학적 상세화 된 SSP 시나리오 일 자료를 활용하며, Copula 함수 기반의 상세화 모형을 통해 Sub-Daily 정보를 시간적으로 상세화 하였다. 최종적으로 이를 활용하여 미래 IDF 곡선을 유도하였다. 산정된 IDF 곡선 결과를 활용하여 기후변화의 영향을 고려한 설계강수량 변화량을 정량적으로 제시하고자 한다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.32
no.1B
/
pp.29-39
/
2012
Climate change has been obtained researchers' interest, especially in water resources engineering to adjust current conditions to the new circumstance influenced by climate change. In this study, WRF-ARW will be evaluated the capability to estimate distributed precipitation using global weather information instead of the data from rainfall observatory or radar. Cheongmi watershed is selected and adopted to generate a distributed rainfall-runoff model using ModClark. The results from the distributed model with precipitation data from WRF-ARW and the lumped model using observed precipitation data were compared to the observed discharge values. The final results showed that the distributed model, ModClark generated similar pattern of hydrograph to the observations in terms of the time and amount of peak discharge. In addition, the trend of hydrograph from the distributed model presented similar pattern to the observations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.