• Title/Summary/Keyword: 강우시간분포

Search Result 549, Processing Time 0.041 seconds

Runoff Analysis due to the Moving Storm (이동강우에 의한 유출영향분석)

  • Han, Kun-Yeun;Jeon, Min-Woo;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.823-836
    • /
    • 2004
  • Using the simple geometry for the idealized catchment consisting of two plane surfaces and a stream between them, runoff was analysed for the moving storms based on the kinematic wave equation. The storm velocity applied in this study was 0.25∼2.0 m/s moving up, down and cross direction of catchment. Applied rainfall distribution types are uniform, advanced, delayed, intermediate type. The results indicate that the moving storms of cross direction generate the largest peak runoff, and the smallest runoff appears in the case of up stream direction. The sensitivity of runoff to rainfall distribution types decreases as storm velocity increases. It is clear that faster storm velocity generates faster peak time and becomes thin hydrographs rapidly.

Analysis of Rainfall Characteristics Considering the Rainfall Prediction at Incheon City (강우 예측을 통한 인천지역 강우 특성 분석)

  • Park, Ji-Eun;Han, Man-Shin;Choi, Gye-Woon;Hong, Sung-Min;Choi, Hyung-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.352-352
    • /
    • 2011
  • 최근 이상기후 및 집중호우 등의 영향으로 국지적으로 큰 강우가 발생하여 재산피해 및 인명피해를 발생시키고 있으며, 과거 강우발생 빈도에 비하여 큰 강우가 발생되고 있다. 이러한 증가되는 추세에 대하여 확률강우량 산정시 반영하고 있는 추세이며(한만신, 2005), 이렇게 반영된 결과는 확률강우량의 증가와 함께 설계시 반영되어 안전하게 수공구조물을 시공하게 된다. 하지만, 이러한 강우의 경향을 단순하게 증가추세로만 판단하여 미래의 강우를 증가라는 개념으로 검증 절차없이 도입하기에는 과대 추정될 우려가 있으며, 과대 추정된 확률강우량은 결국 시공비의 증가를 유도하여 경제적으로 불이익이 발생한다. 따라서, 과거의 강우자료를 통하여 분석된 최근의 강우 예측결과가 어느정도의 타당성을 갖고 설계된 것인지 판단하여 향후 강우 예측을 통한 확률강우량 산정시 반영하여야 할 것으로 판단된다. 본 연구에는 강우 예측을 위하여 사용되고 있는 ARIMA 모형을 이용하여 인천지역의 1961년~2005년까지의 강우자료를 이용하여 2010년까지의 강우를 예측함으로써 실제 강우자료와의 비교를 통하여 강우 예측의 신뢰성을 검토하여 미래 강우에 대한 예측에 있어서 보다 신뢰성을 확보하고자 하였다. 또한, 강우추세에 의한 인천지역의 확률강우량을 산정함으로써 동일 유역에서의 다른 분포형이나 확률강우를 사용함으로써 발생되는 설계의 혼란을 방지하고자 한다. 본 연구를 위하여 인천지방 기상대의 관측자료를 이용하여 1961년부터 2010년까지의 분단위 강우자료를 획득하였으며, 임의시간에 의한 지속시간별 최대강우량을 산정함으로써 기존의 설계에서 사용되어 왔던 고정시간의 환산계수 대신 실제 최대강우량을 이용함으로써 강우 예측에 대한 정확도를 향상하였고, 확률강우강도식 선정시 지역 강우 특성을 고려하여 결정하여야 한다는 결론을 도출하였다.

  • PDF

산지유역의 초과우량 추정 모형

  • 남선우;최은호
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.49-52
    • /
    • 1990
  • 강우강도가 큰 집중호우가 지표면에 도달하게 되면 강우량중 상당 부분이 수문학적 손실성분인 침수, 증발산, 차단 및 저류등으로 시간에 따라 분포된다. 이 가운데 지표면에 분포된 식생계 및 낙엽등에 의한 차단(canopy interception effect)과, 지표가 포화시의 증발산(wetted environmental evapotranspiration) 및 각종 저류, 즉 지표면 저류(depression storage), 지표토양층에의 저류(retention storage) 성분 등을 들 수 있으며 이들 각 손실성분은 직접유출로 나타나는 초과우량의 발생시간을 지체시켜 주는 역할을 하나 차단성분 및 저류성분은 시간이 경과함에 따라 결국은 증발산 또는 침투성분으로 흡수된다. 따라서 침투성분은 초과우량 추정에 매우 큰 영향을 줄 뿐 아니라 지표면 아래의 흙의 변형을 야기시키며, 중간유출 및 지하수유출에 기여 한다. 대부분의 호우사상은 강우초기에 강우강도가 지표 흙의 침수계수(hydraulic conductivity)보다 작기 때문에 모두 각 손실성분에 의해 손실되며, 강우강도가 점차 커져 침수능을 초과하면 지표면에 순간적으로 물이 고이게 되는데 이것을 지표심수(surface ponding)라하고, 강우시작부터 이 때까지가 침수시간(ponding time)이 된다. 이 지표침수가 나타나는 순간이 곧 직접유출 시작 시간으로 볼 수 있을 뿐 아니라, 침수시간은 지표면의 물수지면에서 볼 때 초기손실량 및 침수율 결정에 중요한 인자가 된다. 본 연구에서는 각 손실 성분별로 유역의 제반 특성을 고려하여 구한 매개변수로부터 시간에 대한 손실율을 결정하여 산지 하천유역에 발생하는 부정강우사상(unsteady rainfall)의 초과우량을 추정하는 모델을 유도하였다. 대상유역으로는 현재 건설부에서 수행하고 있는 국제수문개발계획(IHP) 대표시험유역 가운데 평창강 수계내의 장평유역으로서, 본 유역은 자기 우량계 및 자기 수위계가 운용되고 있고, 인접 대관령 측후소로부터 기상자료를 획득, 이용할 수 있는 비교적 분석에 양호한 조건을 지닌 유역이다. 모델의 유도 과정은 대상유역 식생계로 피복된 산지유역임으로, 식생차단 저류효과를 고려해서 지표면의 흙에 도달되는 순강우주상도를 얻고 이로부터 침수시간 및 침투율을 결정해서 초과우량을 산정하는 모델을 유도하였다. 강우 지속시간내 즉, 유역이 완전 포화시의 증발산율의 결정은 Morton 모델로부터, 침수시간 및 침투율 결정은 Green-Ampt 방정식을 부정강우사상에 적용할 수 있도록 수정된 모델을 사용하였으며, 분석에 이용된 호우는 1986 ~ 1987년도 발생된 호우사상 가운데 강우강도 및 총 강우량이 비교적 큰 7개 강우사상을 선정하였다. 각 호우사상별로 손실율울 지표면에서 물수지개념을 이용하여 계산하고 산술지상에 구성시킨 결과는 다음 그림과 같다. 이 그림에서 굵은 실선으로 나타낸 곡선(B. L. R)은 각 손실을 곡선을 시간축에 따라 산술평균한 대표손실율곡선이다. 이 대표손실율곡선은 역지수함수형으로서 곡선식의 유도는 회기분석을 이용하였다. 초과우량 주상도를 얻기 위하여 이 대표손실을 곡선을 관측 강우주상도에 적용시켜 본 결과 식생계에 의한 차단 저류율은 약 6mm/hr 정도인 것으로 나타났으며, 이로 인한 침수시간 지체효과는 1~3시간 정도로서 비교적 그 영향이 큼을 알았다. 또한 각 호우사상별 침수시간 계산 결과 그 변동이 큰 것으로 나타났는데 이는 초기 강우강도에 민감하기 때문인 것으로 판단되낟. 한편 유역 포화시의 증발산율은 우기의 기상자료를 이용하여 구한 결과 0.05 - 0.10 mm/hr 의 범위로서 이로 인한 강우손실량은 큰 의미가 없음을 알았다.

  • PDF

Development of Diffusive Wave Rainfall-Runoff Model Based on CUDA FORTRAN (CUDA FORTEAN기반 확산파 강우유출모형 개발)

  • Kim, Boram;Kim, Hyeong-Jun;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.287-287
    • /
    • 2021
  • 본 연구에서는 CUDA(Compute Unified Device Architecture) 포트란을 이용하여 확산파 강우 유출모형을 개발하였다. CUDA 포트란은 그래픽 처리 장치(Graphic Processing Unit: GPU)에서 수행하는 병렬 연산 알고리즘을 포트란 언어를 사용하여 작성할 수 있도록 하는 GPU상의 범용계산(General-Purpose Computing on Graphics Processing Units: GPGPU) 기술이다. GPU는 그래픽 처리 작업에 특화된 다수의 산술 논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 이에 따라, CUDA 포트란기반 확산파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시킬 수 있다. 분포형모형의 지배방정식은 확산파모형과 Green-Ampt모형으로 구성되었고, 확산파모형은 유한체적법을 이용하여 이산화 하였다. CUDA 포트란기반 확산파모형의 정확성은 기존 연구된 수리실험 결과 및 CPU기반 강우유출모형과 비교하였으며, 연산소요시간에 대한 효율성은 CPU기반 확산파모형과 비교하였다. 그 결과 CUDA 포트란기반 확산파모형의 결과는 수리실험 결과 및 CPU기반 강우유출모형의 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반 확산파모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.

  • PDF

Estimation of Storm-centered Areal Reduction Factors by Durations and Return Periods Using Radar Rainfall (지속시간 및 재현기간에 따른 레이더 강우 호우중심형 ARF의 산정)

  • Kim, Eunji;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.163-163
    • /
    • 2017
  • 설계홍수량은 수공구조물의 규모를 결정하는데 이용되며, 국내에서는 설계홍수량을 산정하기 위하여 지속시간과 재현기간에 따라 면적강우량을 추정한다. 지점강우량은 제한된 지역을 대표하는 값이므로 지점강우량을 기준면적에 대한 면적강우량으로 환산하기 위하여 면적우량환산계수(ARF, Areal Reduction Factor)를 적용한다. ARF를 산정하는 방법은 과거 관측자료를 활용하여 산정하는 경험적 방법(empirical method)이 주를 이루고 있으며, 경험적 방법은 크게 면적고정형(Fixedarea) 방법과 호우중심형(Storm-centered) 방법으로 분류된다. 면적고정형 방법은 국내 하천설계 기준에서 적용하고 있는 방법으로 면적강우 및 지점강우의 연 최대치를 독립적으로 빈도 해석하여 ARF를 산정하므로 실제 강우사상으로부터 산정된 값과 편차를 보인다. 반면 호우중심형 방법은 각각의 강우사상을 분석 대상 유역 중심에 공간 전이시켜 최대 강우량이 발생하도록 하는 방법으로, 레이더 강우를 활용하면 실제 강우사상의 공간분포 특성을 반영한 현실적인 ARF 산정이 가능하다. 본 연구에서는 국내 기상청에서 제공하는 홍수기(6-9월)의 10분 단위 단일편파 전국합성 레이더 자료를 활용하여 지속시간 1, 3, 6, 12, 24시간에 대한 호우중심형 ARF를 산정하였고, 면적강우 산정 시, 강우사상의 면적을 원형 또는 타원형으로 선정하여 강우의 형상 및 방향성을 고려하였다. 또한 레이더 강우의 중심강우를 지상강우 자료로 산정된 확률강우량 기준으로 분류하여 재현기간별 호우중심형 ARF를 산정하였으며, 이를 통해 기준면적, 지속시간, 재현기간에 따른 ARF의 특성을 분석하고자 하였다.

  • PDF

Development of radar-based nowcasting method using Generative Adversarial Network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 기법 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.64-64
    • /
    • 2022
  • 이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.

  • PDF

Runoff Accuracy Comparison Between Distributed Model and Lumped Model Based on Observed Data (분포형 모형과 집중형 모형의 유출해석 정확도 비교)

  • Kang, Bo-Seong;Yang, Sung-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.430-430
    • /
    • 2015
  • 기상이변에 따른 국지성 호우 및 태풍의 영향으로 돌발 홍수가 자주 발생하여 홍수피해가 증가하고 있다. 이와 같은 피해를 저감하기 위해서는 신속하고 정확한 강우의 예측과 홍수량 산정이 필요하며, 이를 위해 최근 강우의 실시간 변화를 관측하고 예측이 가능한 레이더 강우의 활용성이 증대되고 있다. 강우-유출 해석을 위한 수문 모형으로 집중형 수문모형과 분포형 수문모형이 있다. 집중형 수문모형(HEC-HMS)은 수리 수문학적 매개변수들을 반영하여 강우로 인한 유역의 지표면 유출을 모의하는 단일 사상 모형이며, 분포형 수문모형(Vflo)은 유역의 공간적 특성을 격자기반으로 반영하는 GIS를 기반으로 하고 있으며 레이더 강우와 연계한 물리적 기반의 유출모형으로 홍수량 예측 및 분석에 매우 효과적인 방법이다. 본 연구에서는 GIS를 이용하여 외도천 유역의 지형적 지리적 특성(DEM, 토지피복도, 토양도 등)을 분석하고 분포형 모형인 Vflo와 집중형 모형인 HEC-HMS를 활용하여 유출량을 모의하고, 첨두 유량, 첨두 발생 시간을 비교 분석하여 외도천 유역에 적합한 유출 모형을 확인하였다. 이와 같이 강우-유출 모형에 의해 분석된 결과는 향후 돌발홍수를 대비하기 위한 '단기 강우-유출 분석 시스템' 개발 시 중요한 기반이 될 것으로 기대된다.

  • PDF

The Estimation of Annual Average Rainfall Erosivity in accordance with Equation of Rainfall Kinetic Energy (강우에너지식에 따른 연평균 강우침식능 산정)

  • Lee, Jong-Seol;Chung, Jae-Hak;Won, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.363-363
    • /
    • 2011
  • 무분별한 개발사업으로 인하여 발생되는 토양 침식 피해를 최소화시키기 위해서는 정확한 토양 침식량을 추정해야 한다. 현재 토양 침식량을 추정하기 위한 공식으로 Wischmeier와 Smith(1997)가 발표한 범양 토양손실공식(RUSLE, Revised Universal Soil Loss Equation)을 주로 사용하고 있다. RUSLE 공식의 매개변수 중 하나인 강우침식능 인자 R은 실무에서는 단일강우 확률강우량의 시간분포 강우량에 대하여 강우침식능을 산정하는 방법을 널리 사용하고 있으나, 연평균 강우침식능을 사용하는 경우도 많다. 국립방재연구소(2009)는 전국 53개소의 1960년대~2008년까지의 1시간 강우자료를 이용하여 연평균 강우침식능을 산정한 바 있고, 본 연구에서는 국립방재연구소의 자료(2009)에 23개소를 추가 하고 2009년~2010년 강우자료를 추가하여 강우침식능을 산정하였다. 강우침식능 산정 시 사용되는 강우 운동에너지 공식은 국내외에서 여러 가지 공식이 제안되고 있으나, 본 연구에서는 RUSLE와 USLE에서 추천하고 있는 식과 노재경 등(1984)의 식, van Dijk(2002) 식을 이용하여 각각의 연평균 강우침식능을 산정하고 전국 연평균 강우침식도를 재산정하였다. 연평균 R값의 76개 지점평균은 RUSLE 식 4890, USLE 식 5538, 노재경 식 4608, van Dijk 식 5444 MJ/ha mm/hr로 산정되었다. 에너지식에 따라 값은 최대 930 MJ/ha mm/hr 차이를 보였으나, 분포 양상은 경북 지역을 제외한 모든 유역에서 비슷함을 알 수 있었다. 노재경 식은 서울과 수원의 관측자료를 이용하여 제안된 식으로 타 식에 비하여 우리나라의 강우특성을 비교적 잘 고려한다고 판단되지만, 시간 및 공간적으로 제한된 데이터를 이용하여 제안된 식이므로 실무 적용을 위해서는 추가적인 검정이 필요할 것으로 사료된다.

  • PDF

Application Analysis of GPU-Accelerated Kinematic Wave Model Using CUDA Fortran (CUDA FORTEAN을 이용한 GPU 가속 운동파모형 적용성 분석)

  • Kim, Boram;Kim, Hyung-Jun;Kim, Sooyoung;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.346-346
    • /
    • 2022
  • 본 연구에서는 GPU(Graphic Processing Unit) 가속 분포형모형을 실제 유역에 적용하여 강우 유출모의 결과의 정확성과 모의시간의 효율성에 대한 분석을 수행하였다. 분포형모형의 지배방정식은 운동파모형과 Green-Ampt모형으로 구성되어 있으며, 운동파모형은 유한체적법을 이용하여 이산화 하였다. GPU 가속 모형은 CUDA(Compute Unified Device Architecture) 포트란(Fortran)을 사용하여 개발된 모형으로 수치모의시 연산시간 단축을 고려한 모형이다. 모형의 정확성과 효율성은 미호천 유역에서 발생하는 강우유출현상에 GPU 가속 운동파모형을 적용하여 분석하였다. 수치모의 결과값은 대상유역에 속한 수위관측소의 관측값과 비교하여 정확성을 검증하였고, 수치모의 소요시간은 CPU(Central Processing Unit) 기반 운동파모형의 수치모의 소요시간과 비교하여 효율성을 검증하였다. GPU 가속 운동파모형의 수치모의 결과는 관측값과 유사한 결과를 나타냈으며, 수치모의 소요시간은 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.

  • PDF

Comparison of Runoff Hydrographs based on the Moving Rainstorms (이동강우로 인한 유출수문곡선의 비교)

  • Cho, Yong-Soo;Jeon, Min-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1737-1741
    • /
    • 2007
  • Using kinematic wave equation, the influence of moving rainstorms to runoff was analysised with a focus on watershed shapes and rainfall distribution types. Watershed shapes used are the oblong, square and elongated shape, and the distribution types of moving storms used are uniform, advanced and intermediate type. The runoff hydrographs according to the rainfall distribution types were simulated and the characteristics were explored for the storms moving down, up and cross the watershed with various velocity. And the hydrographs were compared in the case of varing the rainstorm intensity and varing the rainstorm length in order to make the same total runoff volume. When the rainstorm intensity was varied the shape, peak time and peak runoff of a runoff hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed shapes. The peak time of down and upstream moving strorms appeared latest in the case of the elongated shape basin, meanwhile at cross stream moving storms, the peak time of elongated shape basin is earlier than the others. For storms moving downstream peak time was more delayed than for other storm direction in the case of elongated watershed. The runoff volume and time base of the hydrograph decreased with the increasing storm speed.

  • PDF