DOI QR코드

DOI QR Code

Runoff Analysis due to the Moving Storm

이동강우에 의한 유출영향분석

  • Published : 2004.10.01

Abstract

Using the simple geometry for the idealized catchment consisting of two plane surfaces and a stream between them, runoff was analysed for the moving storms based on the kinematic wave equation. The storm velocity applied in this study was 0.25∼2.0 m/s moving up, down and cross direction of catchment. Applied rainfall distribution types are uniform, advanced, delayed, intermediate type. The results indicate that the moving storms of cross direction generate the largest peak runoff, and the smallest runoff appears in the case of up stream direction. The sensitivity of runoff to rainfall distribution types decreases as storm velocity increases. It is clear that faster storm velocity generates faster peak time and becomes thin hydrographs rapidly.

두개의 지표면과 그 사이에 있는 하도로 이루어진 유역을 가정하여 이동강우에 대한 유출을 운동파 이론을 적용하므로서 해석하여 다양한 강우이동속도의 경우를 비교 분석하였다. 이동강우는 하천의 상류방향, 하류방향, 횡방향으로 0.25∼2.0m/s의 속도로 이동시켰으며, 이때 강우분포형은 균등분포형, 전진형, 지연형, 중앙집중형을 적용하였다. 횡방향 이동강우의 경우에 첨두유량이 가장 크게 나타났고, 상류방향의 이동강우에 대한 첨두유량이 가장 작게 나타났다. 강우분포형에 대한 유출의 민감도는 강우이동속도가 빠를수록 감소하였다. 강우이동속도가 빠를수록 첨두시간이 빨라지며, 수문곡선은 급격히 얇아짐을 알 수 있다.

Keywords

References

  1. 최계운, 이희승, 안상진 (1992), '분포형 모델을 이용한 유역내 이동강우의 유출해석,' 한국수자원학회논문집, 한국수자원학회, 제25권 제1호, pp. 101-109
  2. 최계운, 강희경, 박용섭 (2000), 'GIS를 활용한 유역내 이동강우에 의한 유출특성 연구.' 한국수자원학회논문집, 한국수자원학회, 제33권 제6호, pp. 793-804
  3. de Lima, JLMP, Singh, V. P. (1999). 'The influence of the pattern of moving rainstorms on overland flow-Laboratory experiments under simulated rainfall.' Water Resources publications, pp. 101-111
  4. Maksimov, V. A (1964). 'Computing runoff produced by a heavy rainstorm with a moving center.' Sou. Hydrol., 5, pp. 510-513
  5. Marcus, N. (1968). A laboratory and analytical study of surface runoff under moving rainstorms. Ph.D. dissertation, University of Illinois
  6. Ngirane-Katashaya, G. G., Wheater, H. S. (1985). 'Hydrograph sensitivity to storm kinematics.' Water Resour. Resear., 21, pp. 337-345 https://doi.org/10.1029/WR021i003p00337
  7. Ogden, F. L., Richardson, J. R, Julien, P. Y. (1995) . 'Similarity in catchment response, 2. Moving rainstorms.' Water Resour. Resear., Vol. 31(6), pp. 1543-1547 https://doi.org/10.1029/95WR00519
  8. Roberts, M. C., Klingeman, P. C. (1970). 'The influence of landform and orecipitation pararreters and flood hydrographs.' J. of Hydrol., 11, pp. 393-411 https://doi.org/10.1016/0022-1694(70)90004-1
  9. Singh, V. P. (1993). Kinematic wave modelling in water resources; surfacewater hydrology. Chichester, John Wiley and Sons Ltd.
  10. Singh, V. P. (1998). 'Effect of the direction of storm movement on planar flow.' Hydrol. Prosess., 12, pp. 147-170 https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<147::AID-HYP568>3.0.CO;2-K
  11. Singh, V. P. (2002a). 'Effect of the duration and direction of storm movement on planar flow with full and partial areal coverage.' Hydrol. Precess., 16, pp. 3437-3466 https://doi.org/10.1002/hyp.1109
  12. Singh, V. P. (2002b). 'The influence of the pattern of moving rainstorms on overland flow.' Advances in Water Resources, 25, pp. 817-828 https://doi.org/10.1016/S0309-1708(02)00067-2
  13. Surkan, A. J. (1974). 'Simulation of storm velocity effects of flow distributed channel network' Water Resour. Resear., 10(6), pp. 1149-1160 https://doi.org/10.1029/WR010i006p01149