• Title/Summary/Keyword: 강수손실

Search Result 62, Processing Time 0.017 seconds

Assessment of Water Control Model for Tomato and Paprika in the Greenhouse Using the Penman-Monteith Model (Penman-Monteith을 이용한 토마토와 파프리카의 증발산 모델 평가)

  • Somnuek, Siriluk;Hong, Youngsin;Kim, Minyoung;Lee, Sanggyu;Baek, Jeonghyun;Kwak, Kangsu;Lee, Hyondong;Lee, Jaesu
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.209-218
    • /
    • 2020
  • This paper investigated actual crop evapotranspiration (ETc) of tomato and paprika planted in test beds of the greenhouse. Crop water requirement (CWR) is the amount of water required to compensate ETc loss from the crop. The main objectives of the study are to assess whether the actual crop watering (ACW) was adequate CWR of tomato and paprika and which amount of ACW should be irrigated to each crop. ETc was estimated using the Penman-Monteith model (P-M) for each crop. ACW was calculated from the difference of amount of nutrient supply water and amount of nutrient drainage water. ACW and CWR of each crop were determined, compared and assessed. Results indicated CWR-tomato was around 100 to 1,200 ml/day, while CWR-paprika ranged from 100 to 500 ml/day. Comparison of ACW and CWR of each crop found that the difference of ACW and CWR are fluctuated following day of planting (DAP). However, the differences could divide into two phases, first the amount of ACWs of each crop are less than CWR in the initial phase (60 DAP) around 500 ml/day and 91 ml/day, respectively. Then, ACWs of each crop are greater than the CWR after 60 DAP until the end of cultivation approximately 400 ml/day in tomato and 178 ml/day in paprika. ETc assessment is necessary to correctly quantify crop irrigation water needs and it is an accurate short-term estimation of CWR in greenhouse for optimal irrigation scheduling. Thus, reducing ACW of tomato and paprika in the greenhouse is a recommendation. The amount of ACW of tomato should be applied from 100 to 1,200 ml/day and paprika is 100 to 500 ml/day depend on DAP.

Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun (SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • "Curve number" (CN) indicates the runoff potential of an area. The US Soil Conservation Service (SCS)'s CN method is a simple, widely used, and efficient method for estimating the runoff from a rainfall event in a particular area, especially in ungauged basins. The use of soil maps requested from end-users was dominant up to about 80% of total use for estimating CN based rainfall-runoff. This study introduce the use of soil maps with respect to hydrologic and watershed management focused on hydrologic soil group and a case study resulted in assessing effective rainfall and runoff hydrograph based on SCS-CN method in a small watershed. The ratio of distribution areas for hydrologic soil group based on detailed soil map (1:25,000) of Korea were 42.2% (A), 29.4% (B), 18.5% (C), and 9.9% (D) for HSG 1995, and 35.1% (A), 15.7% (B), 5.5% (C), and 43.7% (D) for HSG 2006, respectively. The ratio of D group in HSG 2006 accounted for 43.7% of the total and 34.1% reclassified from A, B, and C groups of HSG 1995. Similarity between HSG 1995 and 2006 was about 55%. Our study area was located in Sosu-myeon, Goesan-gun including an approx. 44 $km^2$-catchment, Chungchungbuk-do. We used a digital elevation model (DEM) to delineate the catchments. The soils were classified into 4 hydrologic soil groups on the basis of measured infiltration rate and a model of the representative soils of the study area reported by Jung et al. 2006. Digital soil maps (1:5,000) were used for classifying hydrologic soil groups on the basis of soil series unit. Using high resolution satellite images, we delineated the boundary of each field or other parcel on computer screen, then surveyed the land use and cover in each. We calculated CN for each and used those data and a land use and cover map and a hydrologic soil map to estimate runoff. CN values, which are ranged from 0 (no runoff) to 100 (all precipitation runs off), of the catchment were 73 by HSG 1995 and 79 by HSG 2006, respectively. Each runoff response, peak runoff and time-to-peak, was examined using the SCS triangular synthetic unit hydrograph, and the results of HSG 2006 showed better agreement with the field observed data than those with use of HSG 1995.