• Title/Summary/Keyword: 강박스 거더

Search Result 42, Processing Time 0.023 seconds

Optimal Life-Cycle Cost Design of Steel Box Girders (강박스 거더의 생애주기비용 최적설계)

  • Shin Yung-Seok;Park Jang-Ho;Lee Hyun-Sub;Ahn Ye-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.445-452
    • /
    • 2005
  • This paper presents a design method to minimize Life Cycle Cost (LCC) of steel box girders. The LCC considered in this paper includes initial cost, expected life-cycle maintenance cost and repair cost. A load carrying capacity curve is derived from a condition grade curve of steel girders and load tarrying capacity that is measured in safety diagnostic test. And then, optimal design of steel box girders is performed on the basis of load carrying capacity curve. In this paper time and number of times for repair of steel girders are determined based on the calculated load carrying capacity curve. Also, annual costs considering real discount rate are compared and analyzed in various cases. It is concluded that the optimal design of steel box gilders considering LCC by the presented method will lead to more economical and safer girders than conventional design.

Prestressing Inducing Effect of Continuous Open-top Steel Box Girder Using Modular CFT Members (모듈형 CFT부재를 이용한 개구제형 연속 강박스 거더의 프리스트레싱 도입 효과)

  • Lee, Hak Joon;Kim, Ryeon-Hak;Cho, Kwang-Il;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.111-119
    • /
    • 2022
  • The increasing sectional stiffness and inducing prestress method of continuous steel box girder using modular CFT members use the restoring force of the CFT module generated from removing the prestressing bars in the CFT module after integrating the prestressed CFT module with the lower steel plate of the steel box girders as a prestressing force. The integrated CFT module in the steel box girder can improve the sectional stiffness of the continuous steel box girder section. To examine the applicability of the introduction of prestressing to the integrated steel box girder using the CFT module, in this study, inducing prestressing tests were conducted using CFT modules for steel plate specimens simulating the lower steel plate of the continuous steel box girder, and FE analyses were conducted for inducing prestressing tests. In addition, to confirm the effect of inducing prestress to the actual steel box girder and increasing sectional stiffness by the CFT modules, FE analyses for the actually applicable continuous steel box section were carried out depending on prestressing force and sectional conditions of the CFT modules, FE analysis results were compared.

Precise Measurement of the Steel Box Girder Using Industrial Photogrammetry Method (산업사진측량 기법에 의한 교랑 강박스거더 정밀측정)

  • Jung Sung Heuk;Lee Jae Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2005
  • The purpose of this study was to establish the accuracy of the industrial photogrammetry system constructed with INCA2 metric camera and V-STARS system on steel box girder measurement under industrial measurement condition. The objective of the measurement was to determine the distances of plane to plane or plane to libs, precise positions of the bolt holes and angles of the plane to plane on the steel box girder using coded targets, tape targets, edge targets and target adapters. The measurement undertaken has shown that industrial photogrammetry method were a very accurate and more importantly were produced quickly to measure the steel box girder.

Experimental Study on the Top- Lateral Bracing of U-Type Steel Box Girders Using Real Size Specimen: Torsional Stiffness (실물모형 시험를 이용한 U형 강박스거더의 상부 수평브레이싱에 관한 실험적 연구: 비틂강성)

  • Shim, Nak Hoon;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 2006
  • In this study, a torsional test for U-type steel box girders was performed to observe the effects of the kind of panel for top lateral walateral bracings on the torsional behavior of the U-type steel girder system. For the structural tests, the test specimen with a two-thirds scale of the system actually constructed in the field was used. In the torsional test to observe the efects of top lateral bracings, the most economical arrangement of the top lateral bracing was found to be the panel width to length ratio of 1:1.5 with the inclined angle of $40^{\circ}$.

Evaluation of Internal Bracing Member Forces due to Distortional Behaviors of Tub Section Steel Box Girders (U형 강박스 거더의 뒤틀림 거동에 의한 내부 수직브레이싱 부재력 평가)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2011
  • In this study, the distortional behaviors of tub-section steel girders subjected to torsional loading were analyzed, and predictor equations were developed for estimating the member forces induced in the internal bracing system installed in the steel tub girders. Torsional loadings originated either by eccentric vertical loading or girder curvature were decomposed into the pure torsional force component that does not affect the distortional box deformation, and into the distortional force component that directly induces box distortion. The axial member forces induced in the internal cross frames were formulated as a function of the magnitude of torsional loading through the analytical investigation of the interactions between the distortional force component and internal cross frames. To verify the proposed equations, three-dimensional finite element analysis (3D FEA) was conducted for the straight simple-span girder and the three-span continuous girder samples. Very good agreement was found between the member forces from the FEA and the proposed equations.

Experimental Study on the Presentation of Adequate Type and Number of Bracing Panel for Design of U-Shaped Steel Box Girder (U형 강박스거더의 휨설계를 위한 합리적인 브레이싱의 형태 및 패널 수 도출에 관한 실험적 연구)

  • Shim, Nak-Hoon;Park, Young-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.68-76
    • /
    • 2007
  • In the present study, tests for U-type steel box girder are performed to observe the effects of W-type and X-type of top lateral bracings on the bending behavior of the U-type steel box girder system. Another objective of the present study is to investigate the adequacy of the currently available design formula. For the structural tests, the test specimen with two third scale of the system constructed in the field was used. In this test, several different spacings are used for the top lateral bracings. The stresses measured from the bending tests are compared with those by the formula proposed by Helwig. An adequate type and the required number of panel for diagonal bracing was obtained.

A Parametric Study on Intermediate Diaphragms of Steel-Box-Girder Bridges (강박스 거더교의 내부 다이아프램에 관한 매개변수 연구)

  • Park, Nam Hoi;Lim, Da Soo;Cho, Sun Kyu;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.231-239
    • /
    • 2003
  • Many box girder bridges have been constructed during the past several decades due to their large bending and torsional rigidities as well as aesthetic considerations. However, box girders have shortcoming in that the cross section distorts under an eccentric loading and warps out of the section plane. Therefore, in order to reduce distortional stresses such as distortional warping and transverse bending normal stresses, diaphragms were generally installed in the box girders. Shapes of the diaphragms in steel-box-girder bridges constructed up to date were solid-plate, frame, and truss types. The objectives of this study using parametric study were to evaluate the appropriate stiffness ratio of intermediate diaphragms and then to propose the effective spacing and numbers of intermediate diaphragms based on the evaluated stiffness ratio. Target bridges for this study were straight continuous span bridges with a single-cell steel box section. The parameters for the parametric study were the shape of box section, the span numbers, the equivalent span length, the stiffness of intermediate diaphragms, and the spacing of intermediate diaphragms. From the results of the parametric study, the effective spacing and numbers as well as the stiffness ratio of the intermediate diaphragms will be presented.

Design of Longitudinal prestress of precast decks in twin-girder continuous composite bridges (강박스거더 교량의 프레임 형식 중간다이아프램의 설계)

  • Yoon, Dong Yong;An, Sung Hyun;Lee, Sung Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.515-524
    • /
    • 2006
  • Cross-sectional distortions take place when steel box girders a re subjected to torsional moment, as a consequence of which distortional warping stresses are necessarily developed. Additional normal stresses due to the distortion are should be included at the design stage. The relative magnitude with respect to the maximum bending stress are kept less than the specific values, i.e., at 5~10%, by properly spaced intermediate diaphragms that could prevent the distortional deformation of the box girder. However, current design equations for the stiffness of intermediate diaphragms were derived based on BEF. In this study, the area required by the intermediate diaphragm members are investigated through three-dimensional finite element analyses. The results of the analyses indicate that the current equations give to conservative values for the intermediate diaphragm of box girder bridges. Finally, an improved equation for the area of the intermediate diaphragm is derived from a regression analysis from the finite element analysis results.

Landscape Preference over Single-Spaned Steel Box Girder Bridge by Bridge Shape Parameters (단경간 강박스거더교의 교량형상계수별 경관선호도 분석에 관한 연구)

  • Kim, Rak-Gi;Geum, Gi-Jeong;Yang, Gye-Seung;Im, Seong-Bin
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.7-18
    • /
    • 2006
  • The Purpose of this study is to develop landscape Preference and define elements of difference in landscape preference of the 1-span Steel Box Girder Bridge by Bridge Shape Parameters(BSP) through Design of Experiments. Lately, the 1-span Steel Box Girder Bridge is dominations much component ratio and the Steel Box Girder Bridge has strong Points that is economically Profitable and management has easy when construct. but landscape preference of the 1-span Steel Box Girder Bridge was evaluated low because impression of landscape is being surfeited and dulled. Do to consider optimization in design that give change to Bridge Shape Parameters(BSP) to supplement this shortcoming in this study. Therefore, this study changes Bridge Shape Parameters(BSP) and extract elements that influence in landscape preference of the 1-span Steel Box Girder Bridge. and based on the design that consider landscape Preference of the 1-span Steel Box Girder Bridge, some essential guidelines for rational design of the 1-span Steel Box Girder Bridge suggested.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (II) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(II) - 해석적 연구 및 균열제어 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.133-142
    • /
    • 2000
  • This study deals with behavior of steel box girder bridges according to the concrete slab casting sequences and sectional types. The time dependent behavior of bridges caused by the differential setting of slab concrete resulting from time gap for each part of slab deck in a sequential placing method produces is analyzed. In correlation studies between girder section types and placing sequences, time dependent effects of concrete creep and shrinkage are implemented in the analytical model proposed in the previous study. Finally, field recommendations in terms of concrete slump and relative humidity are suggested to prevent early transverse cracking of concrete slabs.

  • PDF