• Title/Summary/Keyword: 강도계수변화율

Search Result 122, Processing Time 0.029 seconds

Development and Basic Performance Characterization of Neutralized Fabric Filter (제전사여과포의 개발 및 기초성능 규명)

  • 박영옥;구철오;임정환;김홍룡;손재익;이영우
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-64
    • /
    • 1998
  • A neutralized fabric filter of which major raw materials were polyester and stainless steel fibers was developed and its physiochemical properties and basic filter characteristics were investigated. Four finds of dusts generated in the typical domestic industry were used, which were coke dust from a steel manufacturing process, cement dust from a cement manufacturing process, flu ash from a fluidized-bed combustor, and incinerator ash from a waste plastics incinerator. The physicochemical properties of the neutralized fabric filter were analyzed in terms of changes in tensile strength and initial elastic modulus under $SO_2$ and $NO_2$ atmospheres, mean flow pore pressure, bubble point pore diameter, mean flow pore diameter, and pore size distribution. In addition, the pressure drop, dust penetration, and figure of merit for the fabric filter were investigated in a bench-scale filter testing unit. The pressure drop increased as the filtration velocity and dust loading increased, and its increasing shape depended on the type of dust. The dust penetration rapidly decreased as the dust loading increased irrespective of the type of dust. The figures of merit for the fabric filters increased in the early stage of filtration and then showed rapid decreases followed maintaining a constant level.

  • PDF

Performance Characteristics of No-Fines Polymer Concrete using Recycled Coarse Aggregate with Binder Contents (결합재의 함량에 따른 순환굵은골재 사용 무세골재 폴리머 콘크리트의 성능 발현 특성)

  • Kim, Do-Heon;Jung, Hyuk-Sang;Kim, Dong-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.433-442
    • /
    • 2021
  • In this study, the properties of no-fines polymer concrete with different polymer binder contents were evaluated. The polymer concrete was formulated using a polymeric binder (unsaturated polyester resin), fly ash, and recycled coarse aggregate (60%) and crushed coarse aggregate (40%). The polymeric binder content (4.0-6.0wt.%) was used as an experimental variable because it dramatically affects both the cost-effectiveness and material properties. The results showed that the density, compressive strength, flexural strength both before and after exposure to freezing and thawing increased as the polymer binder content increased, while the absorption, void ratio, permeable voids, coefficient of permeability, and acid resistance (mass loss by acid attack) decreased as the polymeric binder content increased. In particular, even though the void ratio was 18.4% and the water permeability coefficient was 7.3mm/sec, the compressive strength and flexural strength were as high as 38.0MPa and 10.0MPa, respectively, much more significant than those of previous studies. Other properties such as absorption and acid resistance were also found to be excellent. The results appear to be rooted in the increased adhesion of the binder by adding a cross-linking agent and the surface hydrophobicity of the polymer.

Study on the Characteristics of Shear Strength on the Weathered Granite Soil Slope in Accordance with the Rainfall (강우에 따른 화강암질 풍화토 사면의 전단강도 특성에 관한 연구)

  • Shim Tae-Sup;Kim Sun-Hak;Ki Wan-Seo;Joo Seung-Wan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.349-360
    • /
    • 2004
  • This study calculated the pore water pressure, the depth of seepage, the constant of the strength in accordance with the slope inclination and the rainfall intensity over the slope built by the weathered granite soil (SP, SM). And, the change of the shear strength in accordance with the rainfall has been compared and analyzed by applying the shear strength formula of the unsaturated soil. As a result, the rainfall intensity is stronger and the slope inclination is gentler the seepage speed in accordance with the rainfall became faster proportionally. As a result of comparing and analyzing both the theoretical value of Lumb and the actual value of the model, it can be said that the actual value is faster. Since SM shows the bigger shear strength than SP, it can also be said that as the granules increase, the coefficient of permeability becomes smaller; and as the seepage rate became smaller, it affects the seepage speed. Likewise, the shear strength within the slope displays the smallest shear strength at the inclination of 1:1.5 the reason of its decrease turned out that it was due to the increase of the pore water pressure.

Deformation Characteristics of Zircaloy-4 Fuel Cladding due to Oxidation in Environment of High Temperature and Steam (고온, 수증기 속에서 산화된 질칼로이-4 핵연료 피복관의 변형 특성에 관한 연구)

  • Jung, Sung-Hoon;Suh, Kyung-Soo;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.218-227
    • /
    • 1986
  • Studies were conducted to determine the extent of oxidation and same of the mechanical property changes of Zircaloy-4 fuel cladding after it was exposed to hot steam environment. The purpose of these tests was to provide some informations on the embrittlement behavior of CANDU type fuel cladding, which could be experienced under the loss-of-coolant accident conditions. The Zircaloy fuel cladding tubes were exposed in a steam environment at the temperature of 90$0^{\circ}C$, 1,00$0^{\circ}C$. The growth of the ZrO$_2$ layer combined with an oxygen rich $\alpha$-phase layer into the Zircaloy tube material was found as a function of time t and temperature of steam exposure, E=1.1√Dt+0.002 where D is a temperature dependent diffusion coefficient. The tensile strength of the specimens exposed for a short period increased but decreased continuously with further exposure. The circumferential elongation was drastically changed with the exposure time while the hoop strength did't decrease greatly. The X-ray measurement of preferred orientation of the Zircaloy tube material indicated that grains in the as received tube were oriented such that the poles of the basal (0001) planes were predominantly radial, while the poles of the basal plane in the tube materials heattreated at 1,00$0^{\circ}C$ were oriented tangentially. It appears that this reoriented texture may contribute to lessening the decrease of the hoop strength of the heat treated Zircaloy tube material.

  • PDF

A Study of New Technical Standards for Slope Stability in Port Structures (항만구조물의 사면안정 신 설계기준 연구)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.316-325
    • /
    • 2009
  • Technical design codes of slope stability for port structures were studied by comparing local Korean code with international codes; Japanese, EC and China codes. Three international design codes are based on limit state design method. Although Chinese code was based on the modified Fellenius method in slope stability analyses, it is currently changing to the simplified Bishop method. In Eurocode, the Morgenstern & Price method or the Bishop method is recommended. In Japanese code, however, the modified Fellenius method is preferentially recommended, but the simplified Bishop method could be alternatively used in case of thick sandy ground conditions. As for design parameter determination, Eurocode has stipulated comprehensive partial factors and partial material factors, however Japanese code has clarified empirical partial material factors for each port structure. Chinese code, the minimum ranges of the comprehensive partial factors are stipulated, and the use of the strength index by specific tests is concretely clarified with the safety condition. Case study of slope stability analyses showed the safety factors were higher in order of Chinese, Japanese and Eurocode, respectively.

Strength Characteristics of Cemented Sand of Nak-dong River (낙동강유역 시멘트혼합토의 강도특성)

  • Kim, Youngsu;Jeong, Wooseob;Seok, Taeryong;Im, Ansik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.43-52
    • /
    • 2006
  • There were huge damages of human beings and their properties in many areas of the basin of the Nak-Dong river by the unusual weather and the localized downpour recently. In this research against disasters, we want to know strength of the cemented sand that is mixed with cement and poor-graded sand, to estimate CSG(Cemented Sand and Gravel) method used coffer dam in Japan, which is the materials of riverbed in the basin of the Nak-Dong river for levee's construction. For that, we want to provide the fundamental data which need in the examination of adaptation of levee's material, design and analysis by investigating compressive strength by curing period and cement content, elastic modulus and stress by transformation from compaction test, CBR test, unconfined compression test and triaxial compression test as changing cement content from 2% to 8% at two sites in the basin of the Nak-Dong river.

  • PDF

Evaluation of Reproducibility for Mechanical Properties of Lightweight Concrete using Bottom Ash Aggregates and Foam (바텀애시 골재와 기포를 이용한 경량 콘크리트의 역학적 특성에 대한 재현성 평가)

  • Ji, Gu-Bae;Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • The objective of this study is to examine the reproducibility for compressive strength development and mechanical properties of lightweight concrete made using bottom ash aggregates and foam(LWC-BF). Based on the mix proportions conducted by Ji et al., six identical mixes were prepared with different actual foam volume ratios from 0% to 25% and water-to-binder ratios from 25% to 30%. The presently measured properties, including initial slump, slurry density, compressive strength gains at different ages, splitting tensile strength, and modulus of rupture, were very close to those determined in the previous tests by Ji et al. Thus, the developed LWC-BF has a good potential in obtaining a reproducibility for compressive strength development and mechanical properties even though the troubles of mixing control owing to the addition of preformed foam.

Characteristics of cordierite ceramics filled with alumina platelets (판상형 알루미나 첨가에 의한 코디어라이트의 미세구조 및 물성 변화에 대한 고찰)

  • 이상진;조경식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.292-298
    • /
    • 2002
  • Densified cordierite matrixes added alumina platelets were studied as a ceramic substrate material having a low thermal expansion coefficient, low dielectric constant and proper strength. Amorphous-type cordierite powders were filled with four kinds of alumina platelet powders in various compositions. All samples were sintered at $1300^{\circ}C$ for 2 h in an air atmosphere. Improved flexural strength of about 80 MPa, low dielectric constant of 5.0 at 1 MHz and low thermal expansion coefficient of $3.5 \times 10^{-6}/^{\circ}C$ were obtained by the control of the microstructure. Isolated micropores were formed in the matrix and the porosity was dependent on the platelet content and size. In the 10 vol% of alumina platelet content, the isolated micropores were 3~8 $\mu \textrm{m}$ in size, and an increase in dielectric constant by adding alumina platelet filler was inhibited by the micropores.

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF

Shear Strength and One-dimensional Compression Characteristics of Granitic Gneiss Rockfill Dam Material (화강편마암 댐 축조재료의 전단강도 및 일차원 압축특성)

  • Kim Bum-Joo;Kim Yong-Seong;Shin Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.31-42
    • /
    • 2005
  • In this study, a rockfill-dam material was investigated on its shear strength and compressibility by performing large-scaled triaxial and oedometer tests. The rockfill material was compacted at two different compaction levels and sheared in triaxial compression at three different confining stresses. Also, rockfill samples were prepared to have three different grain size distributions but the same dry density. Each sample with a given grain size distribution was then compressed one-dimensionally in a large-scaled oedometer cell with and without soaking. The rockfill samples exhibited slightly different shear behaviors with the varying compaction and confining stress levels. The increase in the compaction level changed the behavior from contractive to dilative. Dilation decreased gradually with increasing confining stress, resulting in reduction in the peak shear strength. The large-scaled oedometer test results showed that particle breakages increased with increasing average particle sizes of the samples. Comparing the samples with different gradations, a relatively well-graded sample exhibited lower compressibility. For saturated samples, slightly higher deformations were observed, compared to dry samples. The values of tangent constrained modulis for the dry samples were larger by about 10 to 20$\%$, on the average, than those for the saturated samples.