• Title/Summary/Keyword: 강구조 설계

Search Result 658, Processing Time 0.026 seconds

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.

Life Cycle Assessments and Effect Factors in the Planning Stage of Steel Bridge (강교량의 기획단계에서의 환경부하 평가 및 영향요인에 관한 연구)

  • Jeon, Min Yeong;Kyung, Kab Soo;Lee, Sung Jin;Ryu, Seong Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • Recently, interest for environmental pollution in various fields is on the increase, and the researches on the life cycle assessment of environmental performance assessment method for calculating the environmental loads are currently most performed. It is expected to have a significant influence on the environment, since SOC infrastructures are go through a variety of materials, manufacturing process, however it is judged that researches and measures for environmental pollution is insufficient. In this study, we build the data for 204 of steel bridge designed after 2000 year, and the 100 of bridge which were selected to from obtained results were calculated the environmental loads at the planning stage based on the life cycle assessment. In addition, standard classification systems in work type for steel bridges were established. Based on this, the basic design data and input materials for the bridges are applied to the LCI DB, and the environmental load for required material is evaluated and is shown as Eco-point. Environmental loads obtained from this study, it is judged that can be utilized as a basic data for the process of the life cycle assessment in future steel bridge design.

Cable Adjustment of Composite Cable Stayed Bridge with Fuzzy Linear Regression Analysis (선형퍼지회귀분석기법을 이용한 합성형 사장교 케이블의 장력보정)

  • Kwon, Jang Sub;Chang, Seung Pil;Cho, Suh Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.579-588
    • /
    • 1997
  • During the construction of cable stayed bridge, errors are always caused by various reasons, accumulated and amplified through the complex construction steps. It is likely that the undesirable stress distribution of members and the large deflection of the bridge different from design values come out The adjustment of cables during construction is absolutely indispensable to correct the stress distribution of the members and the geometrical configuration of the bridge. In the conventional method, weight coefficients are used to consider the difference of units between cable forces and girder deflections during the optimization process of cable adjustment. However, it is not easy to determine weight coefficients and the adjustment must be repeated several times with the time consuming process of the determination of new weight coefficients in case that errors are out of design allowable limits. In this paper, fuzzy linear regression analysis is applied to the cable adjustment to overcome those problems. In the application of fuzzy linear regression analysis method the designer's intention and the design allowable limits can be formulated in the form of the constraints of the linear optimization problem. Therefore, the cable adjustment in construction site can be carried out with the fuzzy linear regression analysis more rapidly than with the convetional method.

  • PDF

A Study on Elasto-Plastic Behavior of Column-to-Beam Welded Connection with 600MPa Class High Performance Steel (600MPa급(SM 570 TMC) 고성능강 기둥-보 용접접합부의 탄소성 거동에 관한 연구)

  • Kim, Jong Rak;Oh, Young Suk;Baek, Ki Youl;Chang, Sung Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.783-792
    • /
    • 2008
  • While the recent high demand for mega-tall buildings has led to the development of high-performance and high-strength steels, the requirements for architectural-structure-performance steel have been raised as engineers recognize the potential damage that an earthquake can wreak on a tall building. A 600MPa-class steel has emerged to meet such need, and many studies are currently exploring its practical applications on civil engineering works and mega-tall buildings. The available data on the horizontal-force behaviors of structures built with such new steel, however, are still insufficient. There is an urgent need to look into its design data, especially its toughness, and to compare the plastic strain ratios of column-to-beam connections using high-strength steel and regular steel. One of the first studies on the behavior of a column-to-beam connection using 600MPa-class steel (SM570 TMC), this thesis analyzes such steel's structural performance by conducting a structural test on seismic resistance on a full-scale column-to-beam welded connection with non-scallop and recommended-scallop details. Compared with the previous studies on SM490, this thesis evaluates the weldability of SM570 TMC and presents the latter's seismic design data for use in testing its practical application.

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

Evaluation of Impact Factor in Suspension Bridges under A Series of Moving Vehicles (일련의 주행 차량에 의한 현수교의 충격계수 평가)

  • Park, Yong Myung;Kim, Dong Hyun;Kim, Hee Soon;Park, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.485-498
    • /
    • 2014
  • In this paper, vehicle-bridge interaction analysis under a series of moving vehicles to simulate a lane load was performed to estimate impact factor of the main cable, hanger and girder for the selected suspension bridges with 404m and 1545m main span. Korea Bridge Design Code(Limit State Design) was selected for the live model in which KL-510 truck was modeled 6-d.o.f. vehicle and a lane load was simulated by a series of single-axle vehicles. For the 404m main span bridge, hinge-type and floating-type girders at the tower were considered to examine the impact factor according to the connection and supporting type of the girders. The parameters considered herein are the types of live load-a truck only and a truck plus lane load, eccentricity of moving vehicles, road surface roughness and vehicle speed. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck only. The impact factors were also evaluated by using the influence line method that is commonly used in cable-supported bridges and compared with those from vehicle-bridge interaction analysis.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Optimum Design Criteria of Steel Structure members based on ETCM (ETCM에 의한 강구조부재의 최적설계규준)

  • 이증빈;박주원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.277-287
    • /
    • 1996
  • Based on the developments of the reliability-based steel structural analysis and design as well as the extending knowledgy on the probabilitic characteristics of loading and resistance the probability based design criteria have been successful Iy developed for many students. The existing design codes, which are genarally based on the structural theory and certain engineering experience, do not realistically consider the uncertainties of loads and resistance and the basic reliability concepts. It is recognized to develope the design criteria by ETCM(Expected Total cost Minimization). In this study, therefore, the proper probability based design criteria (Optimum load and resistance factor design formats ) has been developed based on the safety levels observed from calibration Iii th existing standards, which applies to the ultimate limit states of steel structural members.

  • PDF