• Title/Summary/Keyword: 감정 음성

Search Result 235, Processing Time 0.026 seconds

Emotional System Applied to Android Robot for Human-friendly Interaction (인간 친화적 상호작용을 위한 안드로이드 로봇의 감성 시스템)

  • Lee, Tae-Geun;Lee, Dong-Uk;So, Byeong-Rok;Lee, Ho-Gil
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.95-98
    • /
    • 2007
  • 본 논문은 한국생산기술연구원에서 개발된 안드로이드 로봇(EveR Series) 플랫폼에 적용된 감성 시스템에 관한 내용을 제시한다. EveR 플랫폼은 얼굴 표정, 제스처, 음성합성을 수행 할 수 있는 플랫폼으로써 감성 시스템을 적용하여 인간 친화적인 상호작용을 원활하게 한다. 감성 시스템은 로봇에 동기를 부여하는 동기 모듈(Motivation Module), 다양한 감정들을 가지고 있는 감정 모듈(Emotion Module), 감정들, 제스처, 음성에 영향을 미치는 성격 모듈(Personality Module), 입력 받은 자극들과 상황들에 가중치를 결정하는 기억 모듈(Memory Module)로 구성되어 있다. 감성 시스템은 입력으로 음성, 텍스트, 비전, 촉각 및 상황 정보가 들어오고 감정의 선택과 가중치, 행동, 제스처를 출력하여 인간과의 대화에 있어서 자연스러움을 유도한다.

  • PDF

Development and validation of a Korean Affective Voice Database (한국형 감정 음성 데이터베이스 구축을 위한 타당도 연구)

  • Kim, Yeji;Song, Hyesun;Jeon, Yesol;Oh, Yoorim;Lee, Youngmee
    • Phonetics and Speech Sciences
    • /
    • v.14 no.3
    • /
    • pp.77-86
    • /
    • 2022
  • In this study, we reported the validation results of the Korean Affective Voice Database (KAV DB), an affective voice database available for scientific and clinical use, comprising a total of 113 validated affective voice stimuli. The KAV DB includes audio-recordings of two actors (one male and one female), each uttering 10 semantically neutral sentences with the intention to convey six different affective states (happiness, anger, fear, sadness, surprise, and neutral). The database was organized into three separate voice stimulus sets in order to validate the KAV DB. Participants rated the stimuli on six rating scales corresponding to the six targeted affective states by using a 100 horizontal visual analog scale. The KAV DB showed high internal consistency for voice stimuli (Cronbach's α=.847). The database had high sensitivity (mean=82.8%) and specificity (mean=83.8%). The KAV DB is expected to be useful for both academic research and clinical purposes in the field of communication disorders. The KAV DB is available for download at https://kav-db.notion.site/KAV-DB-75 39a36abe2e414ebf4a50d80436b41a.

A study on pitch detection for RUI emotion classification based on voice (RUI용 음성신호기반의 감정분류를 위한 피치검출기에 관한 연구)

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.421-424
    • /
    • 2015
  • 컴퓨터 기술이 발전하고 컴퓨터 사용이 일반화 되면서 휴먼 인터페이스에 대한 많은 연구들이 진행되어 왔다. 휴먼 인터페이스에서 감정을 인식하는 기술은 컴퓨터와 사람간의 상호작용을 위해 중요한 기술이다. 감정을 인식하는 기술에서 분류 정확도를 높이기 위해 특징벡터를 정확하게 추출하는 것이 중요하다. 본 논문에서는 정확한 피치검출을 위하여 음성신호에서 음성 구간과 비 음성구간을 추출하였으며, Speech Processing 분야에서 사용되는 전 처리 기법인 저역 필터와 유성음 추출 기법, 후처리 기법인 Smoothing 기법을 사용하여 피치 검출을 수행하고 비교하였다. 그 결과, 전 처리 기법인 유성음 추출 기법과 후처리 기법인 Smoothing 기법은 피치 검출의 정확도를 높였고, 저역 필터를 사용한 경우는 피치 검출의 정확도가 떨어트렸다.

  • PDF

Emotion Recognition of Speech Using the Wavelet Transform (웨이블렛 변환을 이용한 음성에서의 감정인식)

  • Go, Hyoun-Joo;Lee, Dae-Jong;Chun, Myung-Geun
    • Annual Conference of KIPS
    • /
    • 2002.04b
    • /
    • pp.817-820
    • /
    • 2002
  • 인간과 기계와의 인터페이스에 있어서 궁극적 목표는, 인간과 기계가 마치 사람과 사람이 대화하듯 자연스런 인터페이스가 이루어지도록 하는데 있다. 이에 본 논문에서는 사람의 음성속에 깃든 6개의 기본 감정을 인식하는 알고리듬을 제안하고자 한다. 이를 위하여 뛰어난 주파수 분해능력을 갖고 있는 웨이블렛 필터뱅크를 이용하여 음성을 여러 개의 서브밴드로 나누고 각 밴드에서 특징점을 추출하여 감정을 이식하고 이를 최종적으로 융합, 단일의 인식값을 내는 다중의사 결정 구조를 갖는 알고리듬을 제안하였다. 이를 적용하여 실제 음성 데이타에 적용한 결과 기존의 방법보다 높은 90%이상의 인식률을 얻을 수 있었다.

  • PDF

Emotion Recognition Method based on Feature and Decision Fusion using Speech Signal and Facial Image (음성 신호와 얼굴 영상을 이용한 특징 및 결정 융합 기반 감정 인식 방법)

  • Joo, Jong-Tae;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.11-14
    • /
    • 2007
  • 인간과 컴퓨터간의 상호교류 하는데 있어서 감정 인식은 필수라 하겠다. 그래서 본 논문에서는 음성 신호 및 얼굴 영상을 BL(Bayesian Learning)과 PCA(Principal Component Analysis)에 적용하여 5가지 감정 (Normal, Happy, Sad, Anger, Surprise) 으로 패턴 분류하였다. 그리고 각각 신호의 단점을 보완하고 인식률을 높이기 위해 결정 융합 방법과 특징 융합 방법을 이용하여 감정융합을 실행하였다. 결정 융합 방법은 각각 인식 시스템을 통해 얻어진 인식 결과 값을 퍼지 소속 함수에 적용하여 감정 융합하였으며, 특정 융합 방법은 SFS(Sequential Forward Selection)특정 선택 방법을 통해 우수한 특정들을 선택한 후 MLP(Multi Layer Perceptron) 기반 신경망(Neural Networks)에 적용하여 감정 융합을 실행하였다.

  • PDF

Multifaceted Evaluation Methodology for AI Interview Candidates - Integration of Facial Recognition, Voice Analysis, and Natural Language Processing (AI면접 대상자에 대한 다면적 평가방법론 -얼굴인식, 음성분석, 자연어처리 영역의 융합)

  • Hyunwook Ji;Sangjin Lee;Seongmin Mun;Jaeyeol Lee;Dongeun Lee;kyusang Lim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.55-58
    • /
    • 2024
  • 최근 각 기업의 AI 면접시스템 도입이 증가하고 있으며, AI 면접에 대한 실효성 논란 또한 많은 상황이다. 본 논문에서는 AI 면접 과정에서 지원자를 평가하는 방식을 시각, 음성, 자연어처리 3영역에서 구현함으로써, 면접 지원자를 다방면으로 분석 방법론의 적절성에 대해 평가하고자 한다. 첫째, 시각적 측면에서, 면접 지원자의 감정을 인식하기 위해, 합성곱 신경망(CNN) 기법을 활용해, 지원자 얼굴에서 6가지 감정을 인식했으며, 지원자가 카메라를 응시하고 있는지를 시계열로 도출하였다. 이를 통해 지원자가 면접에 임하는 태도와 특히 얼굴에서 드러나는 감정을 분석하는 데 주력했다. 둘째, 시각적 효과만으로 면접자의 태도를 파악하는 데 한계가 있기 때문에, 지원자 음성을 주파수로 환산해 특성을 추출하고, Bidirectional LSTM을 활용해 훈련해 지원자 음성에 따른 6가지 감정을 추출했다. 셋째, 지원자의 발언 내용과 관련해 맥락적 의미를 파악해 지원자의 상태를 파악하기 위해, 음성을 STT(Speech-to-Text) 기법을 이용하여 텍스트로 변환하고, 사용 단어의 빈도를 분석하여 지원자의 언어 습관을 파악했다. 이와 함께, 지원자의 발언 내용에 대한 감정 분석을 위해 KoBERT 모델을 적용했으며, 지원자의 성격, 태도, 직무에 대한 이해도를 파악하기 위해 객관적인 평가지표를 제작하여 적용했다. 논문의 분석 결과 AI 면접의 다면적 평가시스템의 적절성과 관련해, 시각화 부분에서는 상당 부분 정확도가 객관적으로 입증되었다고 판단된다. 음성에서 감정분석 분야는 면접자가 제한된 시간에 모든 유형의 감정을 드러내지 않고, 또 유사한 톤의 말이 진행되다 보니 특정 감정을 나타내는 주파수가 다소 집중되는 현상이 나타났다. 마지막으로 자연어처리 영역은 면접자의 발언에서 나오는 말투, 특정 단어의 빈도수를 넘어, 전체적인 맥락과 느낌을 이해할 수 있는 자연어처리 분석모델의 필요성이 더욱 커졌음을 판단했다.

  • PDF

Analyzing the element of emotion recognition from speech (음성으로부터 감성인식 요소분석)

  • 심귀보;박창현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.510-515
    • /
    • 2001
  • Generally, there are (1)Words for conversation (2)Tone (3)Pitch (4)Formant frequency (5)Speech speed, etc as the element for emotional recognition from speech signal. For human being, it is natural that the tone, vice quality, speed words are easier elements rather than frequency to perceive other s feeling. Therefore, the former things are important elements fro classifying feelings. And, previous methods have mainly used the former thins but using formant is good for implementing as machine. Thus. our final goal of this research is to implement an emotional recognition system based on pitch, formant, speech speed, etc. from speech signal. In this paper, as first stage we foun specific features of feeling angry from his words when a man got angry.

  • PDF

RoutingConvNet: A Light-weight Speech Emotion Recognition Model Based on Bidirectional MFCC (RoutingConvNet: 양방향 MFCC 기반 경량 음성감정인식 모델)

  • Hyun Taek Lim;Soo Hyung Kim;Guee Sang Lee;Hyung Jeong Yang
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.28-35
    • /
    • 2023
  • In this study, we propose a new light-weight model RoutingConvNet with fewer parameters to improve the applicability and practicality of speech emotion recognition. To reduce the number of learnable parameters, the proposed model connects bidirectional MFCCs on a channel-by-channel basis to learn long-term emotion dependence and extract contextual features. A light-weight deep CNN is constructed for low-level feature extraction, and self-attention is used to obtain information about channel and spatial signals in speech signals. In addition, we apply dynamic routing to improve the accuracy and construct a model that is robust to feature variations. The proposed model shows parameter reduction and accuracy improvement in the overall experiments of speech emotion datasets (EMO-DB, RAVDESS, and IEMOCAP), achieving 87.86%, 83.44%, and 66.06% accuracy respectively with about 156,000 parameters. In this study, we proposed a metric to calculate the trade-off between the number of parameters and accuracy for performance evaluation against light-weight.

Emotion recognition in speech using hidden Markov model (은닉 마르코프 모델을 이용한 음성에서의 감정인식)

  • 김성일;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.21-26
    • /
    • 2002
  • This paper presents the new approach of identifying human emotional states such as anger, happiness, normal, sadness, or surprise. This is accomplished by using discrete duration continuous hidden Markov models(DDCHMM). For this, the emotional feature parameters are first defined from input speech signals. In this study, we used prosodic parameters such as pitch signals, energy, and their each derivative, which were then trained by HMM for recognition. Speaker adapted emotional models based on maximum a posteriori(MAP) estimation were also considered for speaker adaptation. As results, the simulation performance showed that the recognition rates of vocal emotion gradually increased with an increase of adaptation sample number.

  • PDF

Recognizing Five Emotional States Using Speech Signals (음성 신호를 이용한 화자의 5가지 감성 인식)

  • Kang Bong-Seok;Han Chul-Hee;Woo Kyoung-Ho;Yang Tae-Young;Lee Chungyong;Youn Dae-Hee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.101-104
    • /
    • 1999
  • 본 논문에서는 음성 신호를 이용해서 화자의 감정을 인식하기 위해 3가지 시스템을 구축하고 이들의 성능을 비교해 보았다. 인식 대상으로 하는 감정은 기쁨, 슬픔, 화남, 두려움, 지루함, 평상시의 감정이고, 각 감정에 대한 감정 음성 데이터베이스를 직접 구축하였다. 피치와 에너지 정보를 감성 인식의 특징으로 이용하였고, 인식 알고리듬은 MLB(Maximum-Likelihood Bayes)분류기, NN(Nearest Neighbor)분류기 및 HMM(Hidden Markov Model)분류기를 이용하였다. 이 중 MLB 분류기와 NN 분류기에서는 특징벡터로 피치와 에너지의 평균과 표준편차, 최대값 등 통계적인 정보를 이용하였고, TMM 분류기에서는 각 프레임에서의 델타 피치와 델타델타 피치, 델타 에너지와 델타델타 에너지 등 시간적 정보를 이용하였다. 실험은 화자종속, 문장독립형 방식으로 하였고, 인식 실험 결과는 MLB를 이용해서 $68.9\%, NN을 이용해서 $66.7\%를 얻었고, HMM 분류기를 이용해서 $89.30\%를 얻었다.

  • PDF