• Title/Summary/Keyword: 감쇠 예측

Search Result 318, Processing Time 0.025 seconds

Prediction Model of Rain Attenuation for Ka-Band Satellite Communication (Ka-대역 위성 통신의 위한 강우에 의한 전파 감쇠 예측 모델)

  • 우병훈;강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1038-1043
    • /
    • 2002
  • The demand for multimedia service using Ka-band satellite communication are growing rapi이y. So, in this paper, we have analyzed rain attenuation with typical model, and proposed prediction model of rain attenuation in high frequency(over 20[GHz]). Path loss model by rain attenuation is based upon rain rate of representative region(6 cities). Proposed prediction model of rain attenuation and parameter of satellite link can be available for the Ka-band satellite communication.

Efficient Dynamic Analysis of Tall Buildings with Viscoelastic Dampers (점탄성 감쇠기가 설치된 고층건물의 효율적인 동적 해석)

  • 김상태;홍성일;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.11-19
    • /
    • 1997
  • In this paper, an efficient dynamic analysis method of a building structure with viscoelastic dampers is proposed. Viscoelastic dampers are used for the purpose of controlling vibration of buildings. The matrix condensation technlque based on the rigid diaphragm assumption is not readily applicable for building structures with viscoelastic dampers. An improved procedure for damping matrix condensation is employed in the proposed method to increase the efficiency of analysis. Efficiency and accuracy of the proposed method are verified through analysis of an example structure.

  • PDF

Analysis of C/N Variation of Ku Band Satellite Beacon Receiver According to Rain Attenuation (강우 감쇠에 따른 Ku 대역 위성 비콘 수신기 C/N 변화 해석)

  • Park, Dae-Kil;Lee, Kyung-Soon;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.415-419
    • /
    • 2018
  • This paper predicts and measures the C/N ratio of a beacon signal transmitted from geostationary orbit satellite KorSat 5A ($113^{\circ}E$) at a ground station located in Kimpo. Based on the ground stations, we compared the rain attenuation of the zone K of ITU-R and the rain attenuation which analyzed the domestic weather information. In ITU-R, the Korean rainfall characteristics are classified into zone K, but forecasting the rainfall intensity and attenuation of three adjacent cities based on the cumulative rainfall data per minute from 2013 to 2017. The calculation of rainfall path and attenuation is based on ITU-R recommendations. The change of the C/N according to the rainfall amount was confirmed through the 2 week satellite beacon signal C/N measurement. The predicted critical C/N was decreased to 12 dB at $A_{0.3}$. During the experiment, it was confirmed that it decreased up to 8 dB according to the concentrated rainfall.

An Analysis on the Propagation Prediction Model of Earth-space Communication Link using Local Data (로컬 데이터를 이용한 지구-우주 통신 링크의 전파 예측 모델 분석)

  • Lee, Hwa-Choon;Kim, Woo-Su;Choi, Tae-Il;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.483-488
    • /
    • 2019
  • The propagation prediction model of the earth-space communication link used as an international standard was used to calculate and analyze the total losses on the communication path. The standard definition and scope of ITU-R Rec. were analyzed for each parameter(rain, scintillation, atmospheric gas, clouds) used to calculate the total loss. The total losses were calculated using the standard model for each parameter and the statistical data provided by ITU-R, and the results were analyzed using the validation examples data. The rain losses were calculated using long-term local rainfall attenuation statistics data measured in the region, and compared with the calculation results using a rainfall map in the ITU-R Recommendation. The data of Cheollian satellites for the L-Band and Ka-Band were used to calculate the rainfall attenuation. In the range of 0.01% to 0.1%, it was found to have a greater attenuation slope when using local data than attenuation by the model of ITU-R.

Prediction of Elastic Constants and Attenuation Coefficients by the Analysis of Elastic Wave Propagation in Composite Material. (복합재료내의 탄성파 전파의 해석에 의한 탄성계수와 감쇠계수의 예측)

  • 김진연
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.96-99
    • /
    • 1992
  • 섬유강화 복합재료의 동탄성계수와 감쇠특성을 규명하기 위하여 랜덤하게 분포된 무한 실린더 형상의 산란체를 가진 매질내에서, 조화운동을 하는 압축 및 SV탄성파의 전파에 관하여 연구하였다. 단일 실린더에 대한 산란계수로부터 La의 준결정근사법을 이용하여 다중산란에 관한 이론을 유도하였고, 매질내에서의 파동전파 특성을 내포하는 분산관계식을 얻었다. 수치적으로 분산관계식의 해를 구함으로써 2 차원 유효체적강성, 횡방향 유효전단강성 및 각 파동의 전파에 따른 감쇠계수를 주파수와 체적비의 함수로서 제시하였다.

  • PDF

Effect of Particle Size Distribution on the Sensitivity of Combustion Instability for Solid Rocket Motors (입자 크기 분포도를 고려한 고체로켓 모터의 연소 불안정 민감도 예측)

  • Joo, Seongmin;Kim, Junseong;Moon, Heejang;Ohm, Wonsuk;Lee, Dohyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.37-45
    • /
    • 2015
  • Prediction of combustion instability within a solid-propellant rocket motor has been conducted with the classical acoustic analysis. The effect of particle size distribution on the instability has been analyzed by comparing the log-normal distribution to the fixed mono-sized particle followed by a survey of motor length scale effect between the baseline model and small scale model. Particle damping effect was more efficient for the small scale motor which has a relatively high unstable mode frequencies. It was also revealed that the prediction results by considering the particle size distribution show an overall attenuation of fluctuating pressure amplitude with respect to the mono-sized case.

Semi-Active Control System Based on the Experimental Results of the Performance of a Small Scale MR Damper (소형 MR감쇠기의 성능 실험에 기초한 준능동 제어 시스템)

  • Min Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.233-238
    • /
    • 2006
  • In this paper, mixed mode magneto-rheological(MR) damper, which is applicable for vibration control of a small scale multi-story structure, is devised. First, the schematic configurations of the shear, flow, and mixed mode MR dampers are described with design constraints and then the analytical models to predict the field-dependent damping forces are derived for each type. Second, an appropriate size of the mixed mode MR damper is manufactured and its field-dependent damping characteristics are evaluated in time domain. Finally, the performance of the manufactured MR damper which is semi-actively applied to a small scale building excited by earthquake load, is numerically evaluated.

Rain Attenuation Analysis for Designing UAV Data Link on Ku-Band (Ku대역 무인항공기 데이터 링크 설계를 위한 강우감쇠 분석)

  • Lee, Jaeyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1248-1256
    • /
    • 2015
  • It is necessary to apply an exact data and a precise prediction model for a rain attenuation to design the link margin for a data link using Ku-band with the serious effect by rain. In this paper, we investigate the regional rainfall-rate distribution of Korea proposed in TTAK.KO-06.0122/R1 and compare it with the distribution provided by Rec. ITU-R PN.837-1 and Crane. And, the rain rate climate regions similar with the rainfall-rate distribution of Korea in Rec. ITU-R PN.837-1 and Crane model are selected. Finally, using Rec. ITU-R P.618-8 and Crane rain attenuation prediction model, we derive and analyze the rain attenuation for Ku-band frequency according to the time percentage of an average year and the distance of wireless communication link between unmanned aerial vehicle (UAV) and ground data terminal (GDT).

A study on the rain attenuation prediction model using effective permittivity (실효유전율을 이용한 강우감쇠 예측 모델에 관한 연구)

  • 김혁제;조삼모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.52-59
    • /
    • 1998
  • We calculated the wave attenuation due to rain using the effective permittivity of the air with raindrops. The effective permittivity depends on the complex permittivity of rain drop and the fractional volume occupied by the raindrops. We calculate the complex permittivity of rain drop and the raindrops' volume using Marshall-Palmer Rain drop size distribution. The rain attenuation calculated by effective permittivity is compared with the results of ITU rain attenuation model, and the two rain attenuation models have a very close agreement. The effetive permittivity model underestimates the rain attenuation under 50 GHz, and overestimate at the frequencies under 50 GHz copmpared with the ITU model.

  • PDF

Design of Ultra Wide Band MMIC Digital Attenuator with High Attenuation Accuracy (높은 감쇠 정확도를 가지는 초광대역 MMIC 디지털 감쇠기 설계)

  • Ju Inkwon;Yom In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.101-109
    • /
    • 2006
  • A broadband, DC to 40 GHz 5-bit MMIC digital attenuator has been developed. The ultra broadband attenuator has been achieved by adding transmission lines in the conventional Switched-T attenuator and optimizing the transmission line parameters. Momentum simulation was performed in design for accurate performance prediction at high frequencies and Monte Carlo analysis was applied to verify the performance stability against the MMIC process variation. The attenuator has been fabricated with $0.15\;{\mu}m$ GaAs pHEMT process. This attenuator has 1 dB resolution and 23 dB dynamic ranges. High attenuation accuracy has been achieved over all attenuation ranges and 40 GHz bandwidth with the reference state insertion loss of less than 6 dB at 20 GHz. The input and output return losses of the attenuator are better than 14 dB over all attenuation states and frequencies. The measured IIP3 of the attenuator is 33 dBm.