• Title/Summary/Keyword: 감성어 사전

Search Result 30, Processing Time 0.024 seconds

Building Emotional Dictionary to Analysis a Good Feeling of a Book (도서 호감도 분석을 위한 감성어 사전구축 방안)

  • Lee, Tae-Seok;Lee, Su-Myeong;Gang, Seung-Sik
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.147-150
    • /
    • 2015
  • 감성은 개인적인 생활경험을 통해 표현되며 동일한 감정상태와 정보자극을 주더라도 다른 감성이 발생될 뿐만 아니라 개인, 사회, 문화 요인에 따라서 크게 변한다. 따라서 다른 영역의 감성과 도서에 대한 감성이 같지 않기 때문에 별도의 감성 사전 구축이 필요하다. 구축된 감성사전은 비슷한 성향의 도서와 사람을 묶어 추천해 주는데 활용할 수 있다. 감성 사전 구축을 위한 원천 정보로 네티즌이 책을 읽고 호감도와 함께 짧은 문장으로 쓴 소감을 활용하였다. 감성분석에서 가장 기본이 되는 분류는 긍정과 부정으로 나누는 것이다. 하지만, 실제로 도서를 추천하기위해서 긍정과 부정으로만 구분하는 것은 충분하지 않다. 따라서 본 연구에서는 도서에 대해서 감성을 긍정과 부정의 호감정도와 감성의 활성도를 조합한 8개의 감성으로 분류하고 각각의 지수를 함께 산출하여 감성어 사전을 구축하고 활용하는 방안을 제시하였다.

  • PDF

Stock Market Prediction using Sentiment Dictionary based on Predicates (서술어 중심 감성 사전을 통한 주가 등락 예측)

  • Um, Jang-Yun;Lee, Soowon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.857-860
    • /
    • 2014
  • 본 연구에서는 경제 뉴스로부터 서술어 중심의 감성 사전을 구축하고, 하루 동안에 배포된 뉴스를 이용해 전일 종가 대비 당일 종가의 등락을 예측하는 모델을 제안한다. 기존의 주식 도메인 관련 감성 사전을 구축하는 방식은 주가 등락에 관련된 명사를 중심으로 사전을 구축하는 방식이나 대부분의 명사는 극성 값이 중립인 경우가 많아 극성 값을 추정하기 힘들다는 문제점이 있다. 본 연구에서는 극성 값이 잘 표현되는 서술어 중심의 감성사전을 구축하고 극성 값을 자동 추출하여 주가의 등락을 예측한다. 실험 결과 기존 감성 사전을 통한 주가 예측 방법에 비하여 본 연구에서 제안하는 서술어 중심의 감성 사전을 통한 주가 예측 정확도가 높게 나타났다.

Building a Newly-coined Words and Emoticon Emotional Dictionary for Emotional Analysis of Social Data (소셜 데이터의 감성 분석을 위한 신조어 및 이모티콘 감성 사전 구축)

  • Yang, Jin-Sol;Yoon, Kyoung-Il;Jo, Yeong-Hoon;Chung, Kwang Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.914-917
    • /
    • 2019
  • SNS 의 발전으로 기업이나 공공단체는 소셜 데이터가 가지고 있는 감성이나 의견, 여론 등을 분석해서 신흥 가치를 창출하려 한다. 소셜 데이터를 기반으로 하는 감성 분석은 사람들의 소비 측면 및 제품 평가 파악은 물론 기업 매출 및 정책 수립 등에서 도움이 된다. 하지만 소셜 데이터는 각종 신조어 및 이모티콘이 다수 포함되어 있어 기존 감성 분석 방법으로는 정확한 분석을 하기 어렵다. 이러한 문제를 해결하기 위해 본 논문에서는 신조어 및 이모티콘 감성 사전을 구축하고, 분석 과정에서 기존 감성 사전과 본 논문에서 구축된 신조어 및 이모티콘 감성 사전을 사용하여 감성 분석 정확도를 비교한다.

Emotion Analysis System for Social Media using Sentiment Dictionary including newly created word (신조어 감성사전 기반의 소셜미디어 감성분석 시스템)

  • Shin, Panseop;Oh, Hanmin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.225-226
    • /
    • 2019
  • 오피니언 마이닝은 온라인 문서의 감성을 추출하여 분석하는 기법이다. 별도의 여론조사 없이 감성을 분석 가능하므로, 최근 활발한 연구 분야이다. 그러나 소셜미디어에는 신조어 등이 많이 포함되어 있어 기존 감성분석 시스템으로는 정확한 분석이 어려울 뿐만 아니라, 복합적인 감성에 대한 분석을 내리기에 불리하다. 이에 본 연구에서는 직관적인 감성모델을 제안하고 SNS에서 주목받는 다양한 신조어를 수용한 감성단어사전을 구축한 후, 이를 적용하여 소셜미디어에 나타나는 복합적인 감성을 분석하는 감성분석시스템을 설계한다.

  • PDF

Method for Spatial Sentiment Lexicon Construction using Korean Place Reviews (한국어 장소 리뷰를 이용한 공간 감성어 사전 구축 방법)

  • Lee, Young Min;Kwon, Pil;Yu, Ki Yun;Kim, Ji Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.3-12
    • /
    • 2017
  • Leaving positive or negative comments of places where he or she visits on location-based services is being common in daily life. The sentiment analysis of place reviews written by actual visitors can provide valuable information to potential consumers, as well as business owners. To conduct sentiment analysis of a place, a spatial sentiment lexicon that can be used as a criterion is required; yet, lexicon of spatial sentiment words has not been constructed. Therefore, this study suggested a method to construct a spatial sentiment lexicon by analyzing the place review data written by Korean internet users. Among several location categories, theme parks were chosen for this study. For this purpose, natural language processing technique and statistical techniques are used. Spatial sentiment words included the lexicon have information about sentiment polarity and probability score. The spatial sentiment lexicon constructed in this study consists of 3 tables(SSLex_SS, SSLex_single, SSLex_combi) that include 219 spatial sentiment words. Throughout this study, the sentiment analysis has conducted based on the texts written about the theme parks created on Twitter. As the accuracy of the sentiment classification was calculated as 0.714, the validity of the lexicon was verified.

Estimating the Sentiment Value of a Word using Korean Dictionary Definitions and Synonyms (한국어 사전 뜻풀이와 유의어를 이용한 단어의 감성수치 추정 방법)

  • Park, Hae-Jin;Lee, Soowon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.861-864
    • /
    • 2014
  • 비정형 데이터에 대한 분석이 활발해짐에 따라 감성분석 기술에 대한 관심이 높아지고 있다. 대부분의 감성분석 연구는 감성단어를 긍정, 중립, 부정의 세 가지로 분류하여 감성사전을 구축하고 있다. 최근 다양한 감성으로 분류하려는 시도가 있지만, 단어의 감성 정도를 정량화하는 연구는 극히 드물고 자동으로 정량화하지 못하고 있다. 본 논문에서는 한국어 감성사전을 자동 구축하기 위하여 한국어 사전 뜻풀이와 유의어를 이용하여 단어의 감성수치를 자동으로 추정하는 방법을 제안한다. 제안방법은 현재 SNS에서 많이 사용되는 감성단어의 감성수치를 추정하여 감성사전을 확장할 수 있고, 단어의 품사에 상관없이 감성수치를 추정할 수 있다는 장점을 가진다.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

Emotional analysis system for social media using sentiment dictionary with newly-created words

  • Shin, Pan-Seop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Emotional analysis is an application of opinion mining that analyzes opinions and tendencies of people appearing in unstructured text. Recently, emotional analysis of social media has attracted attention, but social media contains newly-created words and slang, so it is not easy to analyze with existing emotional analysis. In this study, I design a new emotional analysis system to solve these problems. The proposed system is possible to analyze various emotions as well as positive and negative in social media including newly-created words and slang. First, I collect newly-created words and slang related to emotions that appear in social media. Then, expand the existing emotional model and use it to quantify the degree of sentiment in emotional words. Also, a new sentiment dictionary is constructed by reflecting the degree of sentiment. Finally, I design an emotional analysis system that applies an sentiment dictionary that includes newly-created words and an extended emotional model.

Movie Rating Inference by Construction of Movie Sentiment Sentence using Movie comments and ratings (영화평과 평점을 이용한 감성 문장 구축을 통한 영화 평점 추론)

  • Oh, Yean-Ju;Chae, Soo-Hoan
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.41-48
    • /
    • 2015
  • On movie review sites, movie ratings are determined by netizens' subjective judgement. This means that inconsistency between ratings and opinions from netizens often occurs. To solve this problem, this paper proposes sentiment sentence sets which affect movie evaluation, and apply sets to comments to infer ratings. Creation of sentiment sentence sets is consisted of two stages, construction of sentiment word dictionary and creation of sentiment sentences for sentiment estimation. Sentiment word dictionary contains sentimental words and its polarities included in reviews. Elements of sentiment sentences are combined with movie related noun and predicate from words sentiment word dictionary. In this study, to make correspondence between polarity of sentiment sentence and sentiment word dictionary, sentiment sentences which have different polarity with sentiment word dictionary are removed. The scores of comments are calculated by applying averages of sentiment sentences elements. The result of experiment shows that sentence scores from sentiment sentence sets are closer to reflect real opinion of comments than ratings by netizens'.

Building Korean Multi-word Expression Lexicons and Grammars Represented by Finite-State Graphs for FbSA of Cosmetic Reviews (화장품 후기글의 자질기반 감성분석을 위한 다단어 표현의 유한그래프 사전 및 문법 구축)

  • Hwang, Chang-Hoe;Yoo, Gwang-Hoon;Choi, Seong-Yong;Shin, Dong-Heouk;Nam, Jee-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.400-405
    • /
    • 2018
  • 본 연구는 한국어 화장품 리뷰 코퍼스의 자질기반 감성 분석을 위하여, 이 도메인에서 실현되는 중요한 다단어 표현(MWE)의 유한상태 그래프 사전과 문법을 구축하는 방법론을 제시하고, 실제 구축된 사전과 문법의 성능을 평가하는 것을 목표로 한다. 본 연구에서는 자연어처리(NLP)에서 중요한 화두로 논의되어 온 MWE의 어휘-통사적 특징을 부분문법 그래프(LGG)로 형식화하였다. 화장품 리뷰 코퍼스에 DECO 한국어 전자사전을 적용하여 어휘 빈도 통계를 획득하고 이에 대한 언어학적 분석을 통해 극성 MWE(Polarity-MWE)와 화제 MWE(Topic MWE)의 전체 네 가지 하위 범주를 분류하였다. 또한 각 모듈간의 상호관계에 대한 어휘-통사적 속성을 반복적으로 적용하는 이중 증식(double-propagation)을 통해 자원을 확장하였다. 이 과정을 통해 구축된 대용량 MWE 유한그래프 사전 DECO-MWE의 성능을 테스트한 결과 각각 0.844(Pol-MWE), 0.742(Top-MWE)의 조화평균을 보였다. 이를 통해 본 연구에서 제안하는 MWE 언어자원 구축 방법론이 다양한 도메인에서 활용될 수 있고 향후 자질기반 감성 분석에 중요한 자원이 될 것임을 확인하였다.

  • PDF