• Title/Summary/Keyword: 감마선 영상

Search Result 100, Processing Time 0.025 seconds

Development of Agricultural Products Screening System through X-ray Density Analysis

  • Eunhyeok Baek;Young-Tae Kwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.105-112
    • /
    • 2023
  • In this paper, we propose a new method for displaying colored defects by measuring the relative density with the wide-area and local densities of X-ray. The relative density of one pixel represents a relative difference from the surrounding pixels, and we also suggest a colorization of X-ray images representing these pixels as normal and defective. The traditional method mainly inspects materials such as plastics and metals, which have large differences in transmittance to the object. Our proposed method can be used to detect defects such as sprouts or holes in images obtained by an inspection machine that detects X-rays. In the experiment, the products that could not be seen with the naked eye were colored with pests or sprouts in a specific color so that they could be used in the agricultural product selection system. Products that are uniformly filled with a single ingredient inside, such as potatoes, carrots, and apples, can be detected effectively. However, it does not work well with bumpy products, such as peppers and paprika. The advantage of this method is that, unlike machine learning, it doesn't require large amounts of data. The proposed method could be applied to a screening system using X-rays and used not only in agricultural product screening systems but also in manufacturing processes such as processed food and parts manufacturing, so that it can be actively used to select defective products.

Detection of Flaws in Air Deck using Non-Destructive Testing (비파괴 검사를 이용한 항공 갑판의 결함 검출)

  • Huh, Eui-Jung;Kang, Jin-Hwa;Kim, Kwang-Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.193-195
    • /
    • 2010
  • 본 논문에서는 비파괴 검사를 통하여 얻어진 항공 갑판 영상에서, 조직의 이상이나 결함의 정도를 자동으로 검출하는 방법을 제안한다. 비파괴 검사를 통하여 얻어진 항공 갑판 영상에서 감마상관 변환과 $7{\times}7$ 소벨 마스크와 $13{\times}13$ 소벨 마스크를 각각 적용하여 윤곽선을 추출한다. 추출된 윤곽선 영역을 평활화와 평균 이진화 기법을 적용하여 영상을 보정한다. 보정된 영상에서 침식 연산과 팽창 연산을 이용하여 잡음을 제거한 후, 라벨링 기법을 적용하여 항공 갑판의 결함 영역을 추출한다. 본 논문에서 제안한 방법을 다양한 항공 갑판 영상을 대상으로 실험한 결과, 기존의 방법보다 항공 갑판에서 결함을 추출하는데 효과적인 것을 확인하였다.

  • PDF

Detection Method of Non-Destructive Flaws using X-ray Images of Ceramic Plate (세라믹 철판의 X-Ray 영상을 이용한 비파괴 결함 검출 방법)

  • Kim, Ju-hyeok;Choi, Sung-Su;Lee, Chae-Hong;Shin, Byung-Chu;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.82-83
    • /
    • 2012
  • 본 논문에서는 세라믹을 비파괴 검사하여 얻어진 영상에서 세라믹의 결함을 검출하는 방법을 제안한다. 비파괴 검사를 통하여 얻어진 영상의 윤곽선을 추출하기 위하여 Prewitt 마스크를 적용한다. 그리고 비파괴 검사 영상의 잡음 비율을 최소화하기 위해 결함이 겹쳐진 윤곽선을 기준으로 감마 처리를 수행하고 임계치 이진화 기법을 적용하여 구간별로 결함을 검출한다. 구간별 결함을 통합하여 결함을 검출한다. 검출한 결함에 Grassfire 기법을 적용하여 미세한 잡음을 제거한다. 본 논문에서 제안된 방법의 성능을 평가하기 위해 비파괴 검사에 적용되는 영상을 대상으로 실험한 결과, 제안된 방법이 기존의 결함 검출 방법보다 결함 검출에 있어서 효과적인 것을 확인하였다.

  • PDF

DOI Detector Design using Different Sized Scintillators in Each Layer (각 층의 서로 다른 크기의 섬광체를 사용한 반응 깊이 측정 검출기 설계)

  • Seung-Jae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • In preclinical positron emisson tomography(PET), spatial resolution degradation occurs outside the field of view(FOV). To solve this problem, a depth of interaction(DOI) detector was developed that measures the position where gamma rays and the scintillator interact. There are a method in which a scintillation pixel array is composed of multiple layers, a method in which photosensors are arranged at both ends of a single layer, a method in which a scintillation pixel array is constituted in several layers and a photosensor is arranged in each layer. In this study, a new type of DOI detector was designed by analyzing the characteristics of the previously developed detectors. In the two-layer detector, different sizes of scintillation pixels were used for each layer, and the array size was configured differently. When configured in this form, the positions of the scintillation pixels for each layer are arranged to be shifted from each other, so that they are imaged at different positions in a flood image. DETECT2000 simulation was performed to confirm the possibility of measuring the depth of interaction of the designed detector. A flood image was reconstructed from a light signal acquired by a gamma-ray event generated at the center of each scintillation pixel. As a result, it was confirmed that all scintillation pixels for each layer were separated from the reconstructed flood image and imaged to measure the interaction depth. When this detector is applied to preclinical PET, it is considered that excellent images can be obtained by improving spatial resolution.

Development of a Small Gamma Camera Using NaI(T1)-Position Sensitive Photomultiplier Tube for Breast Imaging (NaI (T1) 섬광결정과 위치민감형 광전자증배관을 이용한 유방암 진단용 소형 감마카메라 개발)

  • Kim, Jong-Ho;Choi, Yong;Kwon, Hong-Seong;Kim, Hee-Joung;Kim, Sang-Eun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Moon-Hae;Joo, Koan-Sik;Kim, Byuug-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.365-373
    • /
    • 1998
  • Purpose: The conventional gamma camera is not ideal for scintimammography because of its large detector size (${\sim}500mm$ in width) causing high cost and low image quality. We are developing a small gamma camera dedicated for breast imaging. Materials and Methods: The small gamma camera system consists of a NaI (T1) crystal ($60 mm{\times}60 mm{\times}6 mm$) coupled with a Hamamatsu R3941 Position Sensitive Photomultiplier Tube (PSPMT), a resister chain circuit, preamplifiers, nuclear instrument modules, an analog to digital converter and a personal computer for control and display. The PSPMT was read out using a standard resistive charge division which multiplexes the 34 cross wire anode channels into 4 signals ($X^+,\;X^-,\;Y^+,\;Y^-$). Those signals were individually amplified by four preamplifiers and then, shaped and amplified by amplifiers. The signals were discriminated ana digitized via triggering signal and used to localize the position of an event by applying the Anger logic. Results: The intrinsic sensitivity of the system was approximately 8,000 counts/sec/${\mu}Ci$. High quality flood and hole mask images were obtained. Breast phantom containing $2{\sim}7 mm$ diameter spheres was successfully imaged with a parallel hole collimator The image displayed accurate size and activity distribution over the imaging field of view Conclusion: We have succesfully developed a small gamma camera using NaI(T1)-PSPMT and nuclear Instrument modules. The small gamma camera developed in this study might improve the diagnostic accuracy of scintimammography by optimally imaging the breast.

  • PDF

Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy (Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 1998
  • Ho-l66 was produced by neutron reaction in a reactor at the Korea Atomic Energy Institute (Taejon, Korea). Ho-l66 emits a high energy beta particles with a maximum energy of 1.85 MeV and small proportion of gamma rays (80 keV). Therefore, the radiation absorbed dose estimation could be based on the in-vivo quantification of the activity in tumors from the gamma camera images. Approximately 1 mCi of Ho-l66 in solution was mixed into the flood phantom and planar scintigraphic images were acquired with and without patient interposed between the phantom and scintillation camera. Transmission factor over an area of interest was calculated from the ratio of counts in selected regions of the two images described above. A dual-head gamma camera(Multispect2, Siemens, Hoffman Estates, IL, USA) equipped with medium energy collimators was utilized for imaging(80 keV${\pm}$10%). Fifty-nine year old female patient with hepatoma was enrolled into the therapeutic protocol after the informed consent obtained. Thirty millicuries(110MBq) of Ho-166-CHICO was injected into the right hepatic arterial branch supplying hepatoma. When the injection was completed, anterior and posterior scintigraphic views of the chest and pelvic regions were obtained for 3 successive days. Regions of interest (ROIs) were drawn over the organs in both the anterior and posterior views. The activity in those ROIs was estimated from geometric mean, calibration factor and transmission factors. Absorbed dose was calculated using the Marinelli formula and Medical Internal Radiation Dose (MIRD) schema. Tumor dose of the patient treated with 1110 MBq(30 mCi) Ho-l66 was calculated to be 179.7 Gy. Dose distribution to normal liver, spleen, lung and bone was 9.1, 10.3, 3.9, 5.0 % of the tumor dose respectively. In conclusion, tumor dose and absorbed dose to surrounding structures were calculated by daily external imaging after the Ho-l66 therapy for hepatoma. In order to limit the thresholding dose to each surrounding organ, absorbed dose calculation provides useful information.

  • PDF

Development of a High Resolution SPECT Detector with Depth-encoding Capability for Multi-energy Imaging: Monte Carlo Simulation (다중에너지 영상 획득을 위한 Depth-Encoding 고분해능 단일광자단층촬영 검출기 개발: 몬테칼로 시뮬레이션 연구)

  • Beak, Cheol-Ha;Hwang, Ji-Yeon;Lee, Seung-Jae;Chung, Yong-Hyun
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The aim of this work was to establish the methodology for event positioning by measuring depth of interaction (DOI) information and to evaluate the system sensitivity and spatial resolution of the new detector for I-125 and Tc-99m imaging. For this purpose, a Monte Carlo simulation tool, DETECT2000 and GATE were used to model the energy deposition and light distribution in the detector and to validate this approach. Our proposed detector module consists of a monolithic CsI(Tl) crystal with dimensions of $50.0{\times}50.0{\times}3.0\;mm^3$. The results of simulation demonstrated that the resolution is less than 1.5 mm for both I-125 and Tc-99m. The main advantage of the proposed detector module is that by using 3 mm thick CsI(Tl) with maximum-likelihood position-estimation (MLPE) method, high resolution I-125 imaging and high sensitivity Tc-99m imaging are possible. In this paper, we proved that our new detector to be a reliable design as a detector for a multi-energy SPECT.

Digital Position Acquisition Method of PET Detector Module using Maximum Likelihood Position Estimation (최대우도함수를 이용한 양전자방출단층촬영기기의 검출기 모듈의 디지털 위치 획득 방법)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • In order to acquire an image in a positron emission tomography, it is necessary to draw the position coordinates of the scintillation pixels of the detector module measured at the same time. To this end, in a detector module using a plurality of scintillation pixels and a small number of photosensors, it is necessary to obtain a flood image and divide a region of each scintillation pixel to obtain a position of a scintillation pixel interacting with a gamma ray. Alternatively, when the number of scintillation pixels and the number of photosensors to be used are the same, the position coordinates for the position of the scintillation pixels can be directly acquired as digital signal coordinates. A method of using a plurality of scintillation pixels and a small number of photosensors requires a process of obtaining digital signal coordinates requires a plurality of photosensors and a signal processing system. This complicates the signal processing process and raises the cost. To solve this problem, in this study, we developed a method of obtaining digital signal coordinates without performing the process of separating the planar image and region using a plurality of flash pixels and a small number of optical sensors. This is a method of obtaining the position coordinate values of the flash pixels interacting with the gamma ray as a digital signal through a look-up table created through the signals acquired from each flash pixel using the maximum likelihood function. Simulation was performed using DETECT2000, and verification was performed on the proposed method. As a result, accurate digital signal coordinates could be obtained from all the flash pixels, and if this is applied to the existing system, it is considered that faster image acquisition is possible by simplifying the signal processing process.

Two Layer DOI Detector Design for PET using Multiple Light Guides for Designing Light Distribution (다수의 광가이드를 통한 빛 분포 설계로 두 층의 반응 깊이를 측정하는 양전자방출단층촬영기기의 검출기 설계)

  • Seung-Jae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.703-708
    • /
    • 2022
  • A detector module measuring the depth of interaction(DOI) was designed to improve the spatial resolution of positron emission tomography(PET). The scintillation pixel array consists of two layers, and a light guide is inserted between the layers to make the light generated through the gamma-ray event different for each layer. There are four light guides, and one light guide is designed to be coupled to a 2 × 2 array of scintillation pixels. The light generated from the top layer is moved to the photosensor with a wider distribution through the light guide, and the light generated from the bottom layer is incident on the photosensor with a narrower distribution than the top layer. When a flood image is reconstructed based on the signals obtained from the photosensor by different distributions, scintillation pixels are imaged at different positions for each layer. To verify this, a DETECT2000 simulation tool that simulates the behavior of light in a scintillator was used. By designing a scintillation pixel array, a detector consisting of a light guide and a photosensor, a gamma ray event was generated in all scintillation pixels to obtain a flood imgae. As a result, it was confirmed that the top and bottom layers were imaged at different positions and completely separated. When this detector is applied to PET, it is considered that image quality can be improved through imporved spatial resolution.

Patch based Multi-Exposure Image Fusion using Unsharp Masking and Gamma Transformation (언샤프 마스킹과 감마 변환을 이용한 패치 기반의 다중 노출 영상 융합)

  • Kim, Jihwan;Choi, Hyunho;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.702-712
    • /
    • 2017
  • In this paper, we propose an unsharp masking algorithm using Laplacian as a weight map for the signal structure and a gamma transformation algorithm using image mean intensity as a weight map for mean intensity. The conventional weight map based on the patch has a disadvantage in that the brightness in the image is shifted to one side in the signal structure and the mean intensity region. So the detailed information is lost. In this paper, we improved the detail using unsharp masking of patch unit and proposed linearly combined the gamma transformed values using the average brightness values of the global and local images. Through the proposed algorithm, the detail information such as edges are preserved and the subjective image quality is improved by adjusting the brightness of the light. Experiment results show that the proposed algorithm show better performance than conventional algorithm.