• Title/Summary/Keyword: 감도온도계수

Search Result 33, Processing Time 0.022 seconds

A Fabrication and Evaluation of Bipolar Integrated Pressure Sensor (바이폴라 공정으로 집적화된 압력센서 제작 및 평가)

  • 이유진;김건년;박효덕;이종홍
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.269-272
    • /
    • 2001
  • 실리콘 마이크로머시닝 기술과 바이폴라 공정으로 집적화된 압력센서를 제작하고 동작특성 평가를 수행하였다. 센서부 보상파라미터를 추출하였고 트리밍 공정을 통하여 출력전압의 보상을 수행하였다. 센서 특성은 압저항 위치, 마스크 정렬 오차, 다이어프램 정밀두께제어 정도, 보호막의 과도식각 정도 등에 의하여 민감하게 좌우됨을 알 수 있었다. 웨이퍼별 샘플추출을 통하여 센서부 감도는 평균 0.653mV/kPa, 감도의 온도계수는 -2078.8ppm/℃, 옵셋 전압은 30.78mV, 옵셋전압의 온도계수는 32.11㎶/℃로 측정되었다. 추출된 샘플의 다이어프램 두께오차는 27±2.5㎛였다. 센서부 특성평가 결과를 통하여 신호처리회로의 옵셋 및 스팬보상, 온도보상을 위한 트리밍 공정을 수행한 결과 개발사양을 만족하는 결과를 얻을 수 있었다.

Fabrication of Metal Thin-Film Type Pressure Sensors (금속박막형 압력센서의 제작)

  • 최성규;김병태;남효덕;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.587-590
    • /
    • 2000
  • This paper presents the characteristics of metal thin-film pressure sensors. The micro pressure sensors consists of a chrom thin-film, patterned on a Wheatstone bridge configuration, sputter-deposited onto thermally oxidized Si wafer an aluminium interconnection layer. The fabricated micro pressure sensors shows a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.16~1.21 mV/V.kgf/$\textrm{cm}^2$ in the temperature range of 25~l0$0^{\circ}C$ and the maximum non-linearity is 0.21 %FS.

  • PDF

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

Pressure sensor using shear piezoresistance of polysilicon films (폴리실리콘의 전단 압저항현상을 이용한 압력센서)

  • Park, Sung-June;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.31-37
    • /
    • 1996
  • This paper presents characteristics of pressure sensor using shear-type piezoresistor of LPCVD(low pressure chemical vapour deposition) grown polycrystalline silicon films. The sensor has 3.1mV/V of pressure sensitivity in the pressure range of $1kgf/cm^{2}$, ${\pm}0.012%FS/^{\circ}C$ of TCO, and ${\pm}0.08%FS/^{\circ}C$ of TCS in the temperature range of $-20{\sim}+125^{\circ}C$. It showed ${\pm}0.2%FS$ of hysteresis and ${\pm}1.5%FS$ of non-linearity. Shear-type polycrystalline silicon pressure sensor can eliminate temperature dependence of offset caused by resistors mismatch and be used in relatively wide temperature range, compared to the conventional full-bridge silicon pressure sensors.

  • PDF

Deformation Measurement of Electronic Components in Mobile Device Using High Sensitivity Shadow Moiré Technique (고감도 그림자 무아레 기법을 이용한 모바일 전자부품의 변형 측정)

  • Yang, Hee-Gul;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.57-65
    • /
    • 2017
  • The electronic components in mobile device are composed of electronic chips and various other materials. These components become extremely thin and the constituent materials have different coefficient of thermal expansion, so that considerable warpages occurs easily due to temperature change or external load. Shadow $moir{\acute{e}}$ is non-contact, whole field technique for measuring out-of-plane displacement, but the measurement sensitivity is not less than $50{\mu}m/fringe$, which is not suitable for measuring the warpage of the electronic components. In this paper, we implemented a measurement method with enhanced sensitivity of $25{\mu}m/fringe$ by investigating and optimizing various experimental conditions of the shadow $moir{\acute{e}}$. In addition, four $moir{\acute{e}}$ fringe patterns recorded by the phase shift are processes to obtain a $moir{\acute{e}}$ fringe patterns with a sensitivity four times higher. The measurement technique is applied to small electronic components of a smart phone for measuring warpage with a high sensitivity of $5{\mu}m/fringe$ at room temperature and at the temperature of $100^{\circ}C$.

Fabrication of the Three Dimensional Accelerometer using Bridge Combination Detection Method (브리지조합 검출방식을 이용한 고온용 3축 가속도센서 제작)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.196-202
    • /
    • 2000
  • In this paper, we proposed the new bridge combination detection method for three dimensional piezoresistive silicon accelerometer, and the accelerometer with SOI structures was fabricated by bulk micromachining technology for using higher temperature than $200^{\circ}C$. The sensitivities of fabricated accelerometer for X, Y and Z-axis acceleration were about 8mV/V G, 8mV/V G and 40mV/V G. The nonlinearity of the output voltage was 1.6%FS and cross-axis sensitivity was within 4.6%. We confirmed that the three bridges detection method is very simple and the output characteristics of this accelerometer were similar to arithmetic circuit method accelerometer. The temperature characteristics of SOI structure accelerometer showed high operating temperature and good stability. And the temperature coefficient of offset voltage and sensitivity were $1033ppm^{\circ}C^{-1}$ and $1145ppm^{\circ}C$ respectively.

  • PDF

Characteristics of a Solder-Clad FBG Temperature Sensor (땜납이 용융 부착된 FBG 온도 센서의 특성)

  • Pyoung, Jae-Hyub;Lee, Sang-Bae;Shin, Jong-Dug
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.45-50
    • /
    • 1999
  • We report a solder-clad fiber Bragg grating(FBG) temperature sensor in order to obtain better Bragg wavelength sensitivity to temperature than a bare FBG sensor. The solder-clad FBG sensor shows a wavelength sensitivity improvement by a factor of four compared to the case of a bare FBG sensor at temperatures below $110^{\circ}C$. However, it has a sensitivity of 0.01 $nm/^{\circ}C$ at temperatures over $110^{\circ}C$, which is identical to that of a bare FBG sensor. Bragg wavelength of the sensor shows a blue-shift below $110^{\circ}C$ because the sensor is fabricated above melting temperature of solder. The thermal stress at the FBG-solder interface has been relieved by annealing, which results in a stable operation.

  • PDF

Performance Parameter of Tissue Mimicking Material measuring Ultrasonic Thermal Index (초음파 열지수 측정용 조직모사 물질의 성능계수)

  • Kim Yong Tae;Jho Moon Jae;Yun Yong Hyeon;Kim Ho Chul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.369-370
    • /
    • 2004
  • 초음파의 조차에 의한 인체내부의 온도상승의 측도로 열지수(thermal index)가 사용되고 있으며, 이는 주파수 및 음향파워에 의존한다. 초음파 조사에 의한 인체내부의 온도상승을 평가하는데 사용되는 재료를 조직 모사 물질이라 한다. 본 논문아사는 단위 음향파워에 대한 온도 변화인 열 감도(thermal sensitivity)를 새로이 정의하였으며, 이 물리량으로 조직모사물질의 성능을 평가 할 수 있다는 것을 제안하고자 한다.

  • PDF

A Temperature-Compensated Hygrometer Using Resistive Humidity Sensors (전기 저항식 습도 센서를 이용한 온도 보상된 습도계 설계)

  • Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.6 s.312
    • /
    • pp.27-32
    • /
    • 2006
  • A temperature-compensated hygrometer has been developed using resistive humidity sensors. It consist of a sine wave generator, logarithm converters, rectifiers, and amplifiers. The hygrometer accomplishes the linearization and temperature compensation of sensor characteristics. The theory of operation is presented and experimental results are used to verify theoretical predictions. The experimental results show that the conversion sensitivity of the hygrometer is about 24.8 mV/%RH and the linearity error of the conversion characteristic is less than 17.2 % over a relative humidity range from 30 to 80 %RH. The results also show that the temperature coefficient of the output voltage is less than $10149ppm/^{\circ}C$ over a temperature range from 22 to $40^{\circ}C$.

Fabrication of a Silicon Hall Sensor for High-temperature Applications (고온용 실리콘 홀 센서의 제작)

  • 정귀상;류지구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.514-519
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$as a dielectrical isolation layer a SDB SOI Hall sensor without pn junction has been fabricated on the Si/ $SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to 30$0^{\circ}C$ the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm$6.7$\times$10$_{-3}$ and $\pm$8.2$\times$10$_{-4}$$^{\circ}C$ respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and high-temperature operation.

  • PDF