• Title/Summary/Keyword: 갈륨 비소

Search Result 52, Processing Time 0.027 seconds

A Study on the Nonlinear and Linear Analysis of Microwave Diode Mixer (마이크로波 다이오드 混合器의 非線形 및 線形解析에 關한 硏究)

  • Park, Eui-Joon;Park, Cheong-Kee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.7-15
    • /
    • 1989
  • A technique is suggested which enables the large signal current and voltage waveforms to be determined for a GaAs Schottky-Barrier diode mixer by extracting the algorithm for the nonlinear circuit analysis from the Gauss-Jacobi relaxation and the application of the Harmonic Balance Technique. Both the nonlinear and linear steps of the analysis are included. This analysis permitts accurate determination of the conversion loss for microwave mixer and the computer simulation provides an method applicable to MMIC design. The validity of the nonlinear and linear analysis is confirmed by comparing the simulation results with experimental data of the conversion loss.

  • PDF

Study of the Multigigabit Multiplexer Design (기가주파수대 멀티플렉서 설계에 관한 연구)

  • 김학선;최병하;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.2
    • /
    • pp.147-154
    • /
    • 1990
  • A 4:1 Time Division Multiplexer(MUX) had been designed in using GaAs Source Coupled FET Logic(SCFL), Designed Multiplexer uses a time division frequency divider and two stage of singnal combining 2:1 multiplexer. The performance of the multiplexer is verified by PSPICE simulation. Designed circuit operates up to 12.5Gbit/s with a power dissipation of 192mW. These performance are more advanced than other reported multiplexer in the speed and power dissipation.

  • PDF

Effects of Cu impurity on the switching characteristics of the optically controlled bistable semiconductor switches (광제어 쌍안정 반도체 스위치에서 구리 불순물이 스위치특성에 미치는 영향)

  • 고성택
    • Electrical & Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.213-219
    • /
    • 1994
  • Cu compensated Si doped GaAs (GaAs :Si:Cu has been chosen as the switch material. The GaAs material has been characterized by DLTS(Deep Level Transient Spectroscopy) technique and the obtained data were used in the computer simulation. Simulation studies are performed on several GaAs switch systems, composed of different densities of Cu, to investigate the influence of deep traps in the switch systems. The computed results demonstrates important aspect of the switch, the existence of two stable states and fast optical quenching. An important parameter optimum Cu density for the switch are also determined.

  • PDF

경사입사각증착법을 이용한 이산화 티타늄 박막 기반의 고반사 분포 브래그 반사기 제작 및 특성

  • Guan, Xiang-Yu;Im, Jeong-U;Jeong, Gwan-Su;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.350.1-350.1
    • /
    • 2014
  • 분포 브래그 반사기(distributed Bragg reflector; DBR)는 광센서, 도파로, 태양전지, 반도체 레이저 다이오드, 광검출기와 같은 고성능 광 및 광전소자 응용분야에 널리 사용되고 있다. 일반적으로, DBR은 박막의 두께를 4분의 1 파장(${\lambda}/4$)으로 가지는 서로 다른 저굴절율 물질과 고굴절율 물질을 교대로 적층 (pair)한 다중 pair로 제작되어지며, DBR의 반사 특성과 반사대역폭은 두 물질의 굴절율 차이와 pair의 수에 영향을 받는다. 그러나, 서로 다른 굴절율을 갖는 두 물질을 이용하는 DBR의 경우, 두 물질간 열팽창계수의 불일치, 접착력 문제, 높은 굴절율 차이를 갖는 물질 선택의 어려움 등 많은 문제점을 지니고 있다. 최근, 경사입사각증착법을 이용한 동일 재료(예, 인듐 주석 산화물, 게르마늄, 실리콘)기반의 DBR 제작 및 특성에 대한 연구가 보고되고 있다. 높은 입사각을 갖고 박막이 증착될 경우, 저율을 갖는 다공박막 제작이 가능하여 경사입사각증착법으로 homogeneous 물질 기반의 고반사 특성을 갖는 다중 pair의 DBR을 제작할 수 있다. 본 실험은, 갈륨비소 기판 위에 경사입사각증착법 및 전자빔증착법을 이용하여 중심파장 960 nm가 되는 이산화 티타늄 기반의 DBR을 제작하였고, 제작된 샘플의 증착된 박막의 표면 및 단면의 프로파일은 주사전자현미경을 사용하여 관찰하였으며, UV-Vis-NIR 스펙트로미터를 이용하여 반사율 특성을 조사하였다.

  • PDF

Design of High-Gain OP AMP Input Stage Using GaAs MESFETs (갈륨비소 MESFET를 이용한 고이득 연산 증폭기의 입력단 설계)

  • 김학선;김은노;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-79
    • /
    • 1992
  • In the high speed analog system satellite communication system, video signal processing and optical fiber interface circuits, GaAs high gain operational amplifier is advantageous due to obtain a high gain because of its low transconductance and other drawbacks, such as low frequency dispersion and process variation. Therefore in this paper, a circuit techniques for improving the voltage gain for GaAs MESFET amplifier is presented. Also, various types of existing current mirror and current mirror proposed are compared.To obtain the high differential gain, bootstrap gain enhancement technique is used and common mode feedback is employed in differential amplifier.The simulation results show that gain is higher than that of basic amplifier about 18.6dB, and stability and frequency performance of differential amplifier are much improved.

  • PDF

Compensation in LPLEC GaAs Single Crystals (LPLEC법으로 성장시킨 GaAs 단결정의 Compensation)

  • Ko, Kyung Hyun
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.213-216
    • /
    • 1992
  • Semiinsulating GaAs crystals employing LPLEC technique should be grown from the Ga-rich melt due to a very low incorporation of unintentional impurities such as carbon (<$10^{15}cm^{-3}$). High resisitivity of this material can be derived from the balanced compensation among not only EL2 deep donors and carbon acceptors but also H1 double charge native acceptors(Ev + 77meV, Ev + 200 meV) and H2 native acceptors(Ev + 68 meV). Considering of the complicated compensation mechanism using statistical calculation of the electron occupancy of each level, SI GaAs crystal with low impurity contents(<$10^{15}cm^{-3}$) can be successfully obtained by maintaining the melt composition around 0.45 As mole fraction.

  • PDF

A Study on the Effects of Hot Phonon in Electron Transport at Millimeter-wave Frequencies (밀리미터 주파수에서 전자의 운동에 대한 Hot Phonon의 영향 연구)

  • 윤태섭
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1070-1078
    • /
    • 1998
  • A density of phonon is increased by application of electric field. At this time the phonon which has higher energy than around is called hot phonon is disappeared after 7 picosecond by scattering with electron and loss energy. Since the lifetime of phonon is very short, the effects of hot phonon can be neglected in the low speed semiconductor device, but it must be considered in high speed devices. DC and AC electric fields are applied to bulk GaAs, and the density of phonon is obtained and analyzed for its effects on electron velocity and electron distribution using Monte Carlo simulation method. Under high electric filed the density of hot phonon increased and energy of hot phonon is decreased by scattering with electron on the other hand the energy of electron is increased. Therefore electron move from central valley of conduntion band to satellite vallies and the valocity of electron decrease since the mass of electron in satellite vally is heavier than central vally. In millimeter wave frequencies, the effects of hot phonon increased at higher frequencies.

  • PDF

Dynamic Characteristic Evaluation of Spin Coater Module for GaAs Wafer Bonding (화합물 반도체 본딩용 Spin Coater Module의 동특성 평가)

  • Song Jun Yeob;Kim Ok Koo;Kang Jae Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.144-151
    • /
    • 2005
  • Spin coater is regarded as a major module rotating at high speed to be used build up polymer resin thin film layer fur bonding process of GaAs wafer. This module is consisted of spin unit for spreading uniformly, align device, resin spreading nozzle and et. al. Specially, spin unit which is a component of module can cause to vibrate and finally affect to the uniformity of polymer resin film layer. For the stability prediction of rotation velocity and uniformity of polymer resin film layer, it is very important to understand the dynamic characteristics of assembled spin coater module and the dynamic response mode resulted from rotation behavior of spin chuck. In this paper, stress concentration mode and the deformed shape of spin chuck generated due to angular acceleration process are presented using analytical method for evaluation of structural safety according to the revolution speed variation of spin unit. And also, deformation form of GaAs wafer due to dynamic behavior of spin chuck is presented fur the comparison of former simulated results.

Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells (InAs/GaAs 양자점 태양전지에서 전하트랩의 영향)

  • Han, Im Sik;Kim, Jong Su;Park, Dong Woo;Kim, Jin Soo;Noh, Sam Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In order to investigate an influence of carrier trap by quantum dots (QDs) on the solar parameters, in this study, the $p^+-QD-n/n^+$ solar cells with InAs/GaAs QD active layers are fabricated, and their characteristics are investigated and compared with those of a GaAs matrix solar cell (MSC). Two different types of QD structures, the Stranski-Krastanow (SK) QD and the quasi-monolayer (QML) QD, have been introduced for the QD solar cells, and the parameters (open-circuit voltage ($V_{OC}$), short-cirucuit current ($I_{SC}$), fill factor (FF), conversion efficiency (CE)) are determined from the current-voltage characteristic curves under a standard solar illumination (AM1.5). In SK-QSC, while FF of 80.0% is similar to that of MSC (80.3%), $V_{OC}$ and $J_{SC}$ are reduced by 0.03 V and $2.6mA/cm^2$, respectively. CE is lowered by 2.6% as results of reduced $V_{OC}$ and $J_{SC}$, which is due to a carrier trap into QDs. Though another alternative structure of QML-QD to be expected to relieve the carrier trap have been firstly tried for QSC in this study, it shows negative results contrary to our expectations.

The Study on Highly Miniaturized Active 90°C Phase Difference Power Divider and Combiner for Application to Wireless Communication (무선 통신 시스템 응용을 위한 초소형화된 능동형 90°C 위상차 전력 분배기와 결합기에 관한 연구)

  • Park, Young-Bae;Kang, Suk-Youb;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.144-152
    • /
    • 2009
  • This paper propose highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner for application to wireless communication system. The conventional passive $90^{\circ}C$ power divider and combiner cannot be integrated on MMIC because of their very large circuit size. Therefore, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner are required for a development of highly integrated MMIC. In this paper, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner employing InGaAs/GaAs HBT were designed, fabricated on GaAs substrate. According to the results, the circuit size of fabricated active $90^{\circ}C$ phase difference power divider and combiner were $1.67{\times}0.87$ mm and $2.42{\times}1.05$ mm, respectively, which were 31.6% and 2.2% of the size of conventional passive branch-line coupler. The output gain division characteristic of proposed divider circuit showed 8.4 dB and 7.9 dB respectively, and output phase difference characteristic showed $-89.3^{\circ}C$. The output gain coupling characteristic of proposed combiner circuit showed 9.4 dB and 10.5 dB respectively, and output phase difference characteristic showed $-92.6^{\circ}C$. The highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner exhibited good RF performances compared with the conventional passive branch-line coupler.