• Title/Summary/Keyword: 갇힌 공기

Search Result 18, Processing Time 0.025 seconds

Outcoupling Enhancement of OLED using Microlens Array and Diffractive Grating (마이크로 렌즈 어레이와 회절격자 레지스트 패턴을 이용한 유기광원(OLED)의 광 추출 효율 향상)

  • Jang, Ji-Hyang;Kim, Kyung-Jo;Kim, Jin-Hun;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.441-446
    • /
    • 2007
  • Outcoupling efficiency of the OLED device is improved by incorporating both a microlens array and a diffractive grating pattern. The microlens array improves the light transmission at the interface of glass and air, and the diffractive grating outcouples the guided mode propagating at the waveguide, which consists of ITO and organic layers. By using the PDMS soft mold imprinting method, the microlens array is fabricated on the glass substrate. The diffractive grating pattern is directly fabricated on the ITO surface by using laser interferometry. A microlens array with a diameter of $10{\mu}m$ improves the light coupling efficiency by 22%. The diffractive grating made of TSMR photoresist enhances the luminance power efficiency by 41% at a current density of $20mA/cm^2$.

Influence of Low-Quality Aggregate on Engineering Properties of Concrete (동일배합 조건에서 저품질 골재가 콘크리트의 공학적 특성에 미치는 영향)

  • Min, Kyeong-Chul;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • In this research, the influence of low-quality aggregate on engineering properties of concrete was experimentally evaluated. From a series of experiment, the results can be summarized as follow: first, the low-quality aggregate in concrete mixture caused up to 83% of decreased slump. For air content, low-quality aggregate increased air content of concrete mixture. Especially, when sea sand was used, because of the narrow gradation with small size, the air content was significantly increased. The compressive strength of concrete mixtures with low-quality aggregates were decreased up to 29% while some cases showed slightly increased compressive strength at early age. Additionally, the concrete mixture mixed with the exploded debris as a coarse aggregate showed approximately 5 to 20% of decreased compressive strength comparing with high-quality of manufacturing rock. In summary, because of the decreased workability of concrete mixture mixed with low-quality aggregates such as exploded debris, clay, and sea sand, it is concerned that worse quality of the ready mixed concrete, produced with the extra water to compensate the decreased workability.

Unsteady Aerodynamic Analysis of an Air-Pressure-Levitated High-Speed Ground Vehicle (공압부양 고속 지상운송채의 비정상 공력해석)

  • Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.728-733
    • /
    • 2008
  • Unsteady aerodynamic analysis of an air-pressure-levitated high-speed ground vehicle moving over the nonplanar ground surface are performed using the boundary-element method. The potential flow solution is included in a time-stepping loop and the wake is captured as part of the solution. When the vehicle moving inside the channel, the lift coefficient and the pitching moment coefficient of the vehicle are increased further because the air trapped by the channel increases the ground effect. In other words, the nonplanar ground surface such as the channel decreases further the longitudinal stability of the vehicle. On the other hand, there is little difference between the ground and the channel in the lateral stability of the vehicle because the lift increment due to the nonplanar ground surface such as the channel takes place on both sides of the wing with the same rate of increase.

Properties of Permeable Formwork using Permeable Liner (투수시트를 활용한 투수거푸집의 특성)

  • Lee, Jong Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.419-426
    • /
    • 2012
  • Fresh concrete has 10~20% extra water in it. As those water remain entrapped air in the concrete, life span of structures is reduced. For that reason, if extra water is eliminated, it will be useful to improve the durability of the structures. Though there were many reports about permeable formwork, the study on the properties of permeable liner itself has been insufficient. In addition, making holes on the form causes lowering of workability. Therefore, this study reviewed the properties of woven and non-woven permeable liner and formwork which has no holes on the form. For the woven and non-woven permeable liner, they showed great application with W/C decrease, lowering roughness, increased compressive strength of surface area and slight loss of cement paste, when the were applied to concrete. In addition, they showed different performance according to the density of woven liner or thickness of non-woven liner. Furthermore, when using the draining non-woven permeable liner which has drainage path inside, concrete surface showed required performance with high workability, without drilling the holes on the form.

Application properties of dewatering form system using the Euro-form (유로폼에 대한 투수거푸집의 적용 특성)

  • Lee, Jong-Suk;Ahn, Kee-Hong;Kim, Do-Gyeum;Ahn, Sang-Gu;Min, Jin-Hong;Hong, Hack-Pyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.601-604
    • /
    • 2008
  • When the concrete is placed, the water, needed for hydration of the cement, is under 30% of W/C including bound and gel water. However, as minimum water content cause bad workability, the W/C have to be higher. Therefore, fresh concrete produce 10${\sim}$20% extra water. As those water remain entrapped air in the concrete, life of the structure is reduced because of the degradation caused by entrapped air. For that reason, if extra water is eliminated, it will be great to improve the durability of the structures. Therefore, this study was performed to verity the fundamental properties through the experiment on the dewatering system using the euro form for eliminating extra water. When the dewatering form was applicated, the compressive strength was increased by 16% than those of normal form. However, the increasing rate of compressive strength got lower as the height is higher. In terms of ultrasonic pulse speed and surface roughness, the dewatering form showed better results than the normal one.

  • PDF

Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration (미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용)

  • Kim, Youngkwang;Kim, Bokju;Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.329-352
    • /
    • 2022
  • It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.

Freezing and Thawing Resistance and fundamental Properties of Antiwashout Underwater Concrete Containing Mineral Admixtures (광물질혼화재 혼합 수중불분리성 콘크리트의 물성 및 동결융해 저항성)

  • Moon HanYoung;Shin Kook-Jae;Song Yong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.455-464
    • /
    • 2005
  • Today the application of antiwashout underwater concrete to the construction sites is increasing steadily, while its reliability is in issue. Particularly, antiwashout underwater concrete is known to have very weak durability on frost attack, and hence Japan society of civil engineers(JSCE) regulated that not to use of antiwashout underwater concrete where the freezing and thawing is suspected. This study aims the improvement of the freezing and thawing resistance for antiwashout underwater concrete. From the results of fundamental test, FA20 and SG50 showed good performance in fluidity and long term compressive strength than control concrete. Meanwhile, MK10 marked the highest compressive strength through the whole curing age but a defect on fluidity was discovered. The results from the repeated freezing and thawing test show that the large volumes of air entrapped by cellulose based antiwashout underwater admixture gave bad effects to frost durability and hence not much benefits were confirmed from the use of mineral admixtures. However there were some increasing effects on frost durability of MK10 and SG50 by securing $6{\pm}0.5\%$ of entraining air. In the meantime, there was a increasing tendency of frost durability by increasing blame's fineness of ground granulated blast furnace slag.

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand (불포화 모래의 흡입응력 이력현상에 대한 실험적 연구)

  • Song, Young-Suk;Choi, Jin-Su;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.145-155
    • /
    • 2012
  • The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.