• Title/Summary/Keyword: 간 영역

Search Result 6,188, Processing Time 0.03 seconds

Detection and Analysis of the liver Area and liver tumors in CT Images using Quantization Method and Fuzzy based-SOM Algorithm (양자화 기법과 퍼지 기반 SOM 알고리즘을 이용한 CT 영상에서의 간 영역과 간 종양 검출 및 분석)

  • Jeon, Tae-Ryong;Jeong, Gyeong-Hun;Kim, Gwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.63-74
    • /
    • 2007
  • 간은 인체의 생명을 유지하고 성장할 수 있도록 하는 영양섭취와 매우 밀접한 관계를 가진 중요한 장기이다. 이러한 간의 중요성에도 불구하고 현재 우리나라의 간암 발병률이 세계에서 가장 높은 수치를 기록하고 있으며 이에 따라 간암을 조기 진단하고 예방할 수 있는 방법의 중요성이 확대되고 있다. 따라서 본 논문에서는 영상 의학적 검사 방법 중 하나인 CT 촬영으로 획득된 조영 증강 CT 영상에서 간 영역과 간 종양 영역을 정확히 검출하고 간 종양의 악성도를 판별할 수 있는 방법을 제안한다. 흉부로부터 5mm 간격으로 약 $40\;{\sim}\;50$장 정도로 촬영한 조영 증강 CT 영상에서 명암도와 명암의 분포도를 이용한 양자화 기법과 장기들의 위치 및 형태학적 특징정보, 그리고 흉부와 복부 양방향으로 인접한 CT 영상들의 정보를 분석하여 간 영역을 검출한다. 간 종양 영역은 과혈관성 종양의 특징을 분석하고 간 영역의 검출 방법에 적용하여 추출한다. 추출된 간 종양 영역은 퍼지 기반 SOM 알고리즘을 제안하여 간 종양의 악성도를 분석하는데 적용한다. 제안된 퍼지 기반 SOM 알고리즘은 SOM의 이웃 반경을 동적으로 조정하는데 퍼지 제어 기법을 적용하여 기존의 SOM 알고리즘보다 종양의 악성 정도를 분류하는 정확성을 개선하였다. 제시된 간 영역과 간 종양 검출 및 분석 방법의 결과와 전문의가 진단한 결과를 비교 분석한 결과, 기존의 간 영역 및 간 종양 영역 검출 방법보다 정확성이 향상된 것을 확인할 수 있었다.

  • PDF

Liver Vessel Extraction based on In-painting Method in Abdominal MRI Images (복부 MRI 영상에서의 인페인팅 기법을 활용한 간 혈관 검출 방법)

  • Eun, Sung-Jong;Whangbo, Taeg-Keun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.525-526
    • /
    • 2011
  • 복부 MRI 영상에서 간의 인식은 간에 존재하는 질병을 파악하는 것뿐만 아니라 간에 대한 치료 방법이나 수술 방법을 결정하는 중요한 정보를 제공한다. 따라서 본 논문은 복부 MRI 영상에서 이러한 간 영역과 간의 혈관을 자동으로 검출하는 알고리즘을 제안한다. 제안 알고리즘은 1단계로 Region Growing의 개선된 방법으로 초기 설정된 간 영역의 외곽선 정보를 이용하여 씨앗점을 설정해 간 영역을 초기 분할한다. 2단계로 분할된 영역 경계선의 지역적 최소값을 이용하여 경계선의 보정 작업을 수행한다. 이후 3단계로 추출된 간 영역을 기반으로 영상 개선 후, 인페인팅(In-painting) 기법을 활용하여 간 영역 내부의 혈관 부분을 검출하게 된다. 제안 알고리즘의 평가는 전문의의 수작업 결과와 비교하였고, 결과 82.5%의 평균 정확도를 보여 제안 알고리즘의 효과적인 간혈관 검출을 확인하였다. 향후 본 연구의 확장으로 검출된 혈관 영역의 3D Volume Rendering 연구를 수행할 예정이다.

  • PDF

Detection and Analysis of the Liver Area and Liver Tumors in CT Scans (CT 영상에서의 간 영역과 간 종양 추출 및 분석)

  • Kim, Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • In Korea, hepatoma is the thirdly frequent cause of death from cancer occupying 17.2% among the whole deaths from cancer and the rate of death from hepatoma comes to about 21's persons per one-hundred thousand ones. This paper proposes an automatic method for the extraction of areas being suspicious as hepatoma from a CT scan and evaluates the availability as an auxiliary tool for the diagnosis of hepatoma. For detecting tumors in the internal of the liver from CT scans, first, an area of the liver is extracted from about $45{\sim}50's$ CT scans obtained by scanning in 2.5-mm intervals starting from the lower part of the chest. In the extraction of an area of the liver, after unconcerned areas outside of the ribs being removed, areas of the internal organs are separated and enlarged by using intensity information of the CT scan. The area of the liver is extracted among separated areas by using information on position and morphology of the liver. Since hepatoma is a hypervascular turner, the area corresponding to hepatoma appears more brightly than the surroundings in contrast-enhancement CT scans, and when hepatoma shows expansile growth, the area has a spherical shape. So, for the extraction of areas of hepatoma, areas being brighter than the surroundings and globe-shaped are selected as candidate ones in an area of the liver, and then, areas appearing at the same position in successive CT scans among the candidates are discriminated as hepatoma. For the performance evaluation of the proposed method, experiment results obtained by applying the proposed method to CT scans were compared with the diagnoses by radiologists. The evaluation results showed that all areas of the liver and liver tumors were extracted exactly and the proposed method has a high availability as an auxiliary diagnosis tools for the discrimination of liver tumors.

  • PDF

CT 영상에서의 간 영역 추출 및 간 종양 분석

  • Jang Do-Won;Lim Eun-Kyung;Kim Chang-Won;Kim Min-Hwan;Kim Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.183-192
    • /
    • 2006
  • 간세포암은 우리나라에서 전체 암사망자 중 17.2%로 3번째의 흔한 사망원인이며, 간암에 의한 사망률은 인구 10만 명당 약 21명에 이른다. 본 논문에서는 간 내부에서 발생하는 간세포암을 CT 영상에서 자동으로 추출하는 방법을 제안하여 간세포암의 보조진단으로서의 유용성에 대해 알아보고자 한다. 간 내부의 종양을 추출하기 위해 흉부의 윗부분에서 시작하여 2.5mm의 간격으로 약 45-50장 정도를 촬영한 CT 영상들을 대상으로 먼저 간 영역을 추출한다. 간 영역 추출은 먼저 관심이 없는 외부 영역을 갈비뼈를 중심으로 제거한 후 영상의 밝기 정보를 이용하여 각 기관의 영역을 분할 한다. 분할된 영역들은 위 아래로 인접한 영상에서의 분할 영역들과 밝기 값을 비교하여 적절하게 병합하는 3차원적 접근방법을 사용한다. 간 영역은 여러개의 영역들 중에서 간 영역의 구조 및 위치 등의 정보를 활용하여 추출한다. 추출된 간 영역에서 종양 판별과 추출을 위해 종양이 가지는 특징을 분석하여 종양을 추출한다. 전형적인 간세포암은 과혈관성 종양이므로 조영증강 CT 영상에서 주위보다 밝은 색으로 나타나며, 팽창 형성장을 보일 경우에는 구형으로 나타나는 특징이 있다. 이에, 주위 보다 밝은 색을 가지고 둥근형태를 가지는 영역을 종양의 후보영역으로 선정한 후, 그 영상의 위와 아래로 연결되는 영상에서도 같은 위치에서 같은 특징을 보이는 영역이 있으면 간 내부의 종양으로 판별하여 추출한다. 제안된 간 영역 및 간 종양 추출 방법의 정확성을 판별하기 위하여 CT 영상을 대상으로 실험하여 영상의학 전문의가 판단한 결과와 비교하였다. 간 영역 추출은 정확히 모두 추출되었으며, 간 종양 추출 및 판별은 전문의의 보조 진단도구로 활용할 수 있는 가능성이 매우 높다는 것을 확인할 수 있었다.emantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다. 도움을 받을 수 있게 되었다.을 거치도록 되어있다. 교통주제도는 국가의 교통정책결정과 관련분야의 기초자료로서 다양하게 활용되고 있으며, 특히 ITS 노드/링크 기본지도로 활용되는 등 교통 분야의 중요한 지리정보로서 구축되고 있다..20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따른 폐환기능의 차이를 보면, 실험군의 술 후 노력성 폐활량이 48시간에 남자($1.78{\pm}0.61L$)가 여자(

  • PDF

Estimation of Causal Connectivity between Cortical Areas Using Near-Infrared Spectroscopy (NIRS) (근적외선 분광법을 이용한 대뇌피질영역 간 연관성 분석)

  • Lee, Seung-Deok;Go, Dal-Gwon;Jeong, Yeong-Jin;Kim, Do-Won;Im, Chang-Hwan;Kim, Beop-Min
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.151-152
    • /
    • 2009
  • 최근 신경과학 분야에서 대뇌피질 영역 간 연관성 분석은 신경학적 질병 (자폐증, 간질, 정신 분열증)의 분석 및 진단에 적용되고 있다. 기존 대뇌피질 영역 간 연관성 분석은 뇌전도 (EEG), 기능적 자기공명영상 (fMRI), 뇌자도 (MEG)등이 이용되었지만, 뇌전도의 낮은 공간분해능, 기능적 자기공명영상의 낮은 시분해능 등은 영역 간 연관성 분석에 단점으로 작용되고 있다. 반면, 근적외선 분광법(NIRS)은 대뇌피질에서의 혈류변화(oxy-, deoxy-hemoglobin)를 비침습적이며 빠른 시분해능으로 측정할 수 있는 방법으로 최근 신경과학 분야에 응용되고 있다 [1-2]. 본 논문에서는 근적외선 분광법을 이용한 대뇌피질영역 간 연관성 분석의 효용성을 입증하기 위해, 쥐의 수염자극 시 대응되는 지역 (일차-, 이차 체감각피질, 일차 운동피질 영역)에서의 혈류변화 신호의 영역 간 연관성 분석을 하였다. 본 연구결과에 의하면 수염자극 시 일차-, 이차 체감각피질 영역에서의 방향성은 확인할 수 없었고, 일차-, 이차 체감각피질 영역에서 일차 운동피질영역으로의 방향성은 확인할 수 있었다. 본 결과는 기존 수염자극 시 활성화되는 전기신호의 패턴과 일치하며, 향후 신경과학적 질병의 분석 및 진단에 근적외선을 이용한 대뇌피질 영역 간 연관성 분석이 유용할 수 있음을 보여준다.

  • PDF

Detection of the Liver and Liver Cancer for CT Images using Shape-based Interpolation and Quantization Method (형태기반 보간법 및 양자화 기법을 이용한 CT 영상에서의 간 영역 및 간 종양 추출)

  • Jun, Tae-Ryong;Kim, Gwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.257-267
    • /
    • 2006
  • 암은 한국에서 전체 사망률의 가장 많은 원인 중의 하나이며 이 중 간세포 암은 암에 의한 사망원인 중 성별에 관계없이 위암 다음으로 사망률이 높다. 특히 $40{\sim}60$세까지 중장년 기에서의 간암 발생률은 세계에서 가장 높은 발병률을 보이고 있으며 OECD 국가 중에서 간암 사망률로 최고 수치를 기록하고 있다. 본 논문에서는 조영증강 CT 영상에서 간암을 자동으로 추축하는 방법을 제안하여 전문의를 보조할 수 있는 보조 전문가 시스템으로서의 유용성을 확인하고자 한다. 흉부로부터 5mm 간격으로 약 $40{\sim}50$장 정도 촬영한 조영 증강 CT 영상으로부터 늑골의 정보를 이용하여 장기들의 정보만으로 구성된 내부 영역과 늑골 및 피하지방층, 그리고 배경으로 구성된 외부 영역을 구분한다. 간 영역의 정보가 포함된 내부 영역에서 명암도와 명암의 분포도, 간의 형태 및 위치 정보, 그리고 각 슬라이드를 기준으로 이전 CT 영상과 다음 CT 영상의 정보를 이용하여 간 영역을 추출한다. 간암은 추출된 간 영역에 형태기반 보간법을 적용하여 CT 촬영시 생기는 슬라이드 사이의 5mm 공간정보를 복원한 후, 각 슬라이드를 기준으로 이전 CT 영상과 다음 CT 영상의 정보와 간암이 가지는 명암도 및 형태학적 특정 정보를 이용하여 추출한다. 제안된 간 영역 및 간암 추출 방법을 전문의가 판별한 것과 비교 분석한 결과, 전문의를 보조 할 수 있는 보조 전문가 시스템으로서 효율적임을 확인할 수 있었다.

  • PDF

Feature Points Detection based on R2-map for Efficiency Liver Recognition (효율적인 간 인식을 위한 R2-map 기반의 특징점 검출 방법)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.385-387
    • /
    • 2012
  • MR 영상에서 간의 인식은 간에 존재하는 질병을 파악하는 것뿐만 아니라 간에 대한 치료 방법이나 수술방법을 결정하는 중요한 정보를 제공한다. 이러한 일반적인 간의 인식 방법은 영역 분할 알고리즘을 기반으로 처리되어진다. IT분야에서의 영역 분할 알고리즘은 대부분 밝기 정보, 형태 정보, 패턴 분석 등 다양한 입력 정보의 컴퓨팅 처리를 통해 처리되어 진다. 그러나 이러한 컴퓨팅 방법으로는 앞서 언급된 입력정보들이 의미가 없을 경우, 영역 분할에 많은 제약이 따르게 된다. 따라서 본 논문은 이러한 컴퓨팅 처리의 근본적인 제약사항을 해결하고자, MR 이론의 R2-map정보 기반의 효과적인 영역 분할 방법은 제안하였다. 본 방법은 간 영역이 포함된 영상에서 실험하였으며, R2-map맵의 일부 특징점을 Region growing의 Seed point로 설정하여 경계가 모호하더라도 영역 분할이 가능하게끔 하였다. 해당 영상의 실험 결과 8.5%의 평균 오차로 일반적인 영역 분할 알고리즘에 비해 높은 정확도가 산출되었다.

The Classification of Fatty Liver by Ultrasound Imaging using Computerizing Method (컴퓨터 기법을 이용한 초음파 영상에서의 지방간 분류)

  • Jang, Hyun-Woo;Kim, Kwang-Beak;Kim, Chang Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2206-2212
    • /
    • 2013
  • We propose a method for the classification of fatty liver by ultrasound imaging using Fuzzy Contrast Enhancement Technique and FCM. ROI images are extracted after removal of information data except ultrasound image of the liver and the kidney then image contrast is improved by Fuzzy Contrast Enhancement Algorithm. The images applied Fuzzy Contrast Enhancement Technique is applied average binarization then ROI images of liver and kidney parenchyma are extracted using Blob algorithm. Representative brightness is extracted in the liver and kidney images using the most frequent brightness level after classification of 10 brightness levels. We applied this method to ultrasound images and a radiologist confirmed the accuracy of diagnosis for fatty liver. This method would be a model for automatic method in the diagnosis of fatty liver.

Automatic Segmentation of the Liver Region in CT Images Using Slob Coloring (블럽 컬러링을 이용한 CT영상에서 간 영역 자동 추출)

  • 임옥현;김진철;박성미;이배호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.760-762
    • /
    • 2004
  • 본 논문에서 CT영상에서 간 영역을 자동적으로 분할할 수 있는 방법을 제안한다. 밝기의 특성을 이용하여 초기 관심 영역을 추출하기 위해 ATI(Automatic Threshold Intensity)기법을 사용하였다. 간 영역을 최종적으로 추출하기 위해 블럽 컬러링 기법을 사용하였다 기존 블럽 컬러링의 연산속도를 개선하기 위해서 Recoloring table을 이용하였다 제안된 방법을 이용하여 실험한 결과로 간 영역 추출의 성공률 90%를 얻었다.

  • PDF

Efficiency Algorithm of Multispectral Image Compression in Wavelet Domain (웨이브릿 영역에서 다분광 화상 데이터의 효율적인 압축 알고리듬)

  • Park, Gyeong Nam;Kim, Yeong Chun;Jang, Jong Guk;Lee, Geon Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.4
    • /
    • pp.38-38
    • /
    • 2001
  • 본 논문에서는 웨이브릿 영역에서의 영역 분류와 대역간 예측 및 선택적 벡터 양자화를 이용한 다분광 화상테이타 압축 기법을 제안하였다. 이 방법에서는 각 대역을 웨이브릿 변환 후, 각 대역의 기저밴드의 대역별 특성을 이용하여 영역 분류를 행하였다. 그리고, 다른 대역과 해상도가 동일하고 공간적 분산이 작으며 분광적 상관성이 큰 기준대역 (reference channel)을 결정한 뒤, 이를 영역별 스칼라 및 분류별 가변 벡터 양자화를 행하여 부호화 하였다. 또한 기준대역과의 대역간 상관성이 큰 대역들에 대해서는 영역별 대역간 예측을 행한 후, 활동도가 높은 블록에 대해서만 선택적 벡터 양자화로 부호화를 행하였다. 이때, 활동도가 높은 블록들의 위치정보는 기준대역으로부터 얻어지는 임계치 지도 (threshold map; THMAP)를 이용하였다. 즉, 제안한 방법에서는 각 대역에 대해 웨이브릿 영역에서의 영역 분류 후 영역별 대역간 예측을 행함으로써 다분광 화상데이타에 존재하는 대역간 중복성을 제거하고 선택적 벡터 양자화를 행함으로써 대역내 중복성을 효과적으로 제거하여 압축효율을 향상시킨다. 실제 원격 센싱된 인공위성 화상데이타에 대한 실험을 통하여 제안한 기법의 부호화 효율이 기존의 기법에 비하여 우수함을 확인하였다.