Proceedings of the Korea Inteligent Information System Society Conference (한국지능정보시스템학회:학술대회논문집)
- 2006.06a
- /
- Pages.183-192
- /
- 2006
CT 영상에서의 간 영역 추출 및 간 종양 분석
- Jang Do-Won (Dept. of Computer Engineering, Silla University) ;
- Lim Eun-Kyung (Dept. of Computer Engineering, Pusan University) ;
- Kim Chang-Won (College of Medicine, Pusan National University) ;
- Kim Min-Hwan (Dept. of Computer Engineering, Pusan University) ;
- Kim Kwang-Baek (Dept. of Computer Engineering, Silla University)
- Published : 2006.06.01
Abstract
간세포암은 우리나라에서 전체 암사망자 중 17.2%로 3번째의 흔한 사망원인이며, 간암에 의한 사망률은 인구 10만 명당 약 21명에 이른다. 본 논문에서는 간 내부에서 발생하는 간세포암을 CT 영상에서 자동으로 추출하는 방법을 제안하여 간세포암의 보조진단으로서의 유용성에 대해 알아보고자 한다. 간 내부의 종양을 추출하기 위해 흉부의 윗부분에서 시작하여 2.5mm의 간격으로 약 45-50장 정도를 촬영한 CT 영상들을 대상으로 먼저 간 영역을 추출한다. 간 영역 추출은 먼저 관심이 없는 외부 영역을 갈비뼈를 중심으로 제거한 후 영상의 밝기 정보를 이용하여 각 기관의 영역을 분할 한다. 분할된 영역들은 위 아래로 인접한 영상에서의 분할 영역들과 밝기 값을 비교하여 적절하게 병합하는 3차원적 접근방법을 사용한다. 간 영역은 여러개의 영역들 중에서 간 영역의 구조 및 위치 등의 정보를 활용하여 추출한다. 추출된 간 영역에서 종양 판별과 추출을 위해 종양이 가지는 특징을 분석하여 종양을 추출한다. 전형적인 간세포암은 과혈관성 종양이므로 조영증강 CT 영상에서 주위보다 밝은 색으로 나타나며, 팽창 형성장을 보일 경우에는 구형으로 나타나는 특징이 있다. 이에, 주위 보다 밝은 색을 가지고 둥근형태를 가지는 영역을 종양의 후보영역으로 선정한 후, 그 영상의 위와 아래로 연결되는 영상에서도 같은 위치에서 같은 특징을 보이는 영역이 있으면 간 내부의 종양으로 판별하여 추출한다. 제안된 간 영역 및 간 종양 추출 방법의 정확성을 판별하기 위하여 CT 영상을 대상으로 실험하여 영상의학 전문의가 판단한 결과와 비교하였다. 간 영역 추출은 정확히 모두 추출되었으며, 간 종양 추출 및 판별은 전문의의 보조 진단도구로 활용할 수 있는 가능성이 매우 높다는 것을 확인할 수 있었다.emantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다. 도움을 받을 수 있게 되었다.을 거치도록 되어있다. 교통주제도는 국가의 교통정책결정과 관련분야의 기초자료로서 다양하게 활용되고 있으며, 특히 ITS 노드/링크 기본지도로 활용되는 등 교통 분야의 중요한 지리정보로서 구축되고 있다..20{\pm}0.37L$, 72시간에