• Title/Summary/Keyword: 간접 적응 제어

Search Result 46, Processing Time 0.159 seconds

Design of Adaptive Controller using Switching Mode with Fuzzy inference and its application for industry Automation Facility (퍼지추론의 스위칭 특성을 이용한 적응제어기 설계 및 산업용 자동화 설비에의 응용)

  • 이형찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.60-68
    • /
    • 1999
  • This paper deals with the tracking control problem of industrial robotic manipulators with unknown or changing dynamics. The proposed method makes use of multiple moodels and switching mechanism by fuzzy inference of the manipulator in an indirect adaptive controller architecture. The models used for the indmtification of the manipliator are identical, except for the initial estimates of the unknown inertial pararmeters of the manipulator and its load. The torque input that is applied to the joint actuators is determined at every instant by the identification model that best approximates the robot dynamics. Simulation results are also included to dermnstrate the improvement in the tracking perfermance when the proposed method is used.s used.

  • PDF

Adaptive Control of D.C. Motor Speed Using W.L.S. Algorithm (W.L.S. 알고리즘을 사용한 직유전동기 속도의 적응제어)

  • Park, Jun;Kwon, Key-Ho;Choi, Kye-Keun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.31-36
    • /
    • 1983
  • The indirect M.R.A.C. method using the W.L.S. algorithm is applied to the speed control of a D.C. motor on the assumption that the motor is the 1-st order, completely controllable and observable, non-minimum phase plant. By the help of M6809 microprocessor system the experiments are performed with respect to the sinusoidal and square reference input. The results show that the speed of a D.C. motor is well controlled by the indirect M.R.A.C. method using W.L.S, algorithm, and that the W.L.S. algorithm is quite suitable to the time-varying plant.

  • PDF

A Characteristics of Control System for Induction Motor using a Speed Estimation Algorithm (속도 추정 알고리즘을 이용한 유도전동기 제어 시스템 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kang, Jin-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2020
  • In order to smoothly control the speed of the induction motor, it is necessary to obtain the required rotor speed information. In order to obtain the speed information, it must be obtained using a sensor, but it can also be obtained using an appropriate algorithm without using a sensor. In order to obtain speed information, a system was designed using a model reference adaptive system (MARS). Indirect vector control, one of the speed control methods of induction motors, was calculated from the motor current and rotor parameter values. The method of obtaining the position information of the magnetic flux by combining the slip frequency with the rotor speed was used. It is possible to simply perform instantaneous current control in a wide speed range without actual magnetic flux information, and has the advantage that the structure of the controller is simple. Therefore, in this paper, the control system was constructed based on the indirect vector control method, and the speed control system of the induction motor was developed by estimating the required rotor speed information as an intelligent algorithm developed without using it as a sensor.

The Design of Indirect Adaptive Controller of Chaotic Nonlinear Systems using Fuzzy Neural Networks (퍼지 신경 회로망을 이용한 혼돈 비선형 시스템의 간접 적응 제어기 설계)

  • 류주훈;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.437-440
    • /
    • 1998
  • In this paper, the design method of fuzzy neural network(FNN) controller using indirect adaptive control technique is presented for controlling chaotic nonlinear systems. Firstly, the fuzzy model identified with a FNN in off-line process. Secondly, the trained fuzzy model tunes adaptively the control rules of the FNN controller in on-line process. In order to evaluate the proposed control method, Indirect adaptive control method is applied to the representative continuous-time chaotic nonlinear systems, that is, the Duffing system and the Lorenz system. Simulations are done to verify the effectivencess of controller.

  • PDF

Indirect Pole Placement Adaptive Controllers using a Nonlinear Feedback (비선형 궤환을 이용한 간접극배치 적응제어기)

  • 김홍필;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.922-933
    • /
    • 1989
  • This paper deals with an indirect pole placement adaptive controller design problem for discrete-time plants with arbitrary zeros in the presence of unmodeled dynamics and/or disturbances. The plant and controller parameters are estimated by separate estimators. The nonlinear feedback is introduced so that the estimated plant has as high degree of controllability as possible. The nonlinear feedback will be used in a finite time, after which the control algorithm becomes a standard pole placement one.

  • PDF

Control of discrete-time chaotic systems using indirect adaptive control (간접 적응 제어 기법을 이용한 이산치 혼돈 시스템의 제어)

  • 박광성;주진만;최윤호;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.318-322
    • /
    • 1996
  • In this study, a controller design method is proposed for controlling the discrete-time chaotic systems efficiently. Our proposed control method is based on Generalized Predictive Control and uses NARMAX models as a controlled model. In order to evaluate the performance of our proposed controller design method, a proposed controller is applied to Henon system which is a discrete-time chaotic system, and then the control performance of the proposed controller are compared with those of the previous model-based controllers through computer simulations. Through simulations, it is shown that the control performance of the proposed controller is superior to that of the conventional model-based controller.

  • PDF

An Adaptive Controller Design for Inderstrial Robotic Maniqulator Using TMS320C5X Chip (TMS320C5X 칩을 사용한 산업용 로보트 매니퓰레이터의 적응제어기 설계)

  • Bae, G. H.;Wang, H. H.;Han, S. H.;Lee, M. C.;Son, G.;Lee, J. M.;Lee, M. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.478-482
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C50) for robotic manipulators to achieve trajectorytracking angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide motion for robotic manipulators. In the proposed scheme, adapation laws are derived from the improved second stability analysis based on the indirect adaptive control theory.l The proposed control scheme is simple in structure, fast in computation, an suitable for implementation of real-time control. Moreover, this scheme does not requre an accurate dynamic modeling, nor values of manipulator paramenters and payload Performance of the adaptive controller is illustrated by exeperimental results for a SCARA robot.

  • PDF

An Robust Control Inderstrial SCARA Robot Manipulator Using TMS320C5X Chip (TMS320C5X 칩을 사용한 산업용 스카라 로봇의 견실제어)

  • 배길호;김용태;김휘동;염만오;한성연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.173-179
    • /
    • 2002
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C50) fur robotic manipulators to achieve trajectory tracking angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved second stability analysis based on the indirect adaptive control theory. The proposed control scheme is simple in structure, fast in computation, an suitable fur implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by experimental results for a SCARA robot.

  • PDF

An Indirect Adaptive Pole placement Controller Using a Discrete Adaptive Observer with Exponenrial Data weighting (지수 함수적 가중 특성의 적응 관측기를 이용한 간접 극배치 적응 제어기)

  • Kim, Jong-Hwan;Park, Dong-Jo;Jeon, Jeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.43-46
    • /
    • 1990
  • A general scheme for a discrete adaptive observer having exponetial weighting properties is presented for a single-input single-output linear system. In this scheme, all the past measurement data are weighted esponetially both with the weighting factor and the stable matrix F. This observer is then implemented in the design of an indirect adaptive pole placement contoller. To increase nemerical stability in getting the controller parameter, a recusive algorithm is introduced. It is shown that the overall control scheme is globally stable with the persistent excition

  • PDF

Vector Control for Two-Phase Inverter-Fed Two-Phase Induction Motors (2상 유도전동기 구동 2상 인버터의 벡터 제어)

  • Jang, Do-Hyun;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.310-317
    • /
    • 2007
  • In this paper, the system equation for the balanced two-phase induction motor is derived and the characteristics for speed control is also analyzed in the region of constant torque and constant power. The modified vector control theory is applied to two-phase motor drive system. The speed of two-phase motor drive can be controlled precisely by the modified indirect vector control theory. The modified vector control theory is simpler comparing to the conventional vector control because of the simpler axis transformation. The computer simulations and the experimental results presented to confirm the vector control for two-phase inverter fed two phase induction motor system.