본 논문은 3차원 텍스쳐 기반의 볼륨 가시화를 위한 GPU 대역폭에 효과적인 렌더링 기법을 제안한다. 전처리 과정에서 옥트리를 이용하여 원본 볼륨 데이터를 계층적으로 균일한 크기로 분할하여 실제 영역만을 효과적으로 검출하게 되고, 렌더링 시에는 가시순서에 따라 옥트리를 탐색하며 리프 노드의 각 부볼륨을 텍스쳐 매핑 유닛에서 처리하고 블렌딩 유닛에서 이를 합성한다. 작은 크기($16^3$ 또는 $32^3$)의 부볼륨 처리는 텍스쳐와 픽셀 캐시의 이용율을 높이고 공백 공간 생략을 가용하게 하여 GPU의 메모리 대역폭을 크게 줄여 렌더링을 가속할 수 있다. 제안하는 기법의 캐시 효율, 메모리 트래픽, 렌더링 시간 등 다양한 실험 결과와 성능분석이 제공된다. 실험 결과는 제안하는 기 법이 전통적인 렌더링 방법에 비해 평균 11배의 대역폭 감소와 3배 빠른 렌더링을 가능하게 하여 GPU를 이용한 볼륨 렌더링에 효과적인 방법임을 보여주었다.
본 논문에서는 비가청주파수 소리신호를 사용하는 데이터 전송 기법을 제안한다. 제안하는 방법은 각 비트에 매핑된 특정 주파수를 혼합하여 신호를 전송함으로써 동시에 여러 비트를 전송할 수 있다. 그리고 인접한 주파수 신호의 간섭으로 인한 데이터 에러를 검출하기 위해 순환 중복 검사 기법을 사용함으로써 데이터 전송 정확도를 높인다. 이 기법은 기존 전송 속도의 한계로 제한된 분야에서만 사용했던 비가청주파수 무선 통신 기법을 더 다양한 분야에 활용할 수 있을 것이다.
본 논문에서는 Mobbing(집단 따돌림) 현상에 관련된 7개의 요소(Factor)와 그 하위에 포함된 60개의 속성(Attribute)들을 선정한다. 다음으로 선정한 속성들에 대해 나와 사용자들 사이에 관계가 있으면 '1', 관계가 없으면 '0'으로 표현하고, 나와 사용자들간의 유사도 산정을 위해 각 요소안에 포함된 속성들의 합에 유사도 함수를 적용한다. 다음으로 클레멘타인의 인공신경망 알고리즘을 통해 속성들을 포함한 요소들이 취할 최적의 가중치를 산출하고, 이 값들의 총합으로 Mobbing 지수를 산정한다. 마지막으로 Social Network 사용자들의 Mobbing 지수를 본 논문에서 설계한 G2 Mobbing 성향 분류 모델(4개의 그룹; Ideal Group of the Social Network, Bullies, Aggressive victimes, Victimes)에 매핑하여 사용자들의 Mobbing 성향을 알아본다.
본 논문에서는 실시간 영상 처리 라이브러리인 OpenCV와 미디어파이프(MediaPipe)를 사용하여 동작 인식 기반 키보드, 마우스 제어 프로그램을 개발하였다. Google의 미디어파이프(MediaPipe)에서 제공하는 손가락 마디 부분의 랜드마크를 인식하며, 실시간 영상 처리로 띄워진 사용자 인터페이스에서 제스처를 통해 키보드 입력과 마우스 제어를 할 수 있으며, Google에서 제공하는 오픈 소스와 결합하여 음성인식을 통한 키보드 입력이 가능하다. 또한, 각 기능끼리 제스처를 통해 기능 변경이 가능하여 다양한 산업 분야에서 원하는 키를 매핑할 수 있기 때문에 활용 가능성이 높으며, 의료 분야에서 감염 예방을 목적으로 사용할 수 있다. 특히 기존의 메타버스에서 사용되는 고가의 센서를 대체하여 비용 절감 부분에서 장점이 있다.
그래프 임베딩 방법은 그래프 구조를 이용하여 그래프의 노드를 저차원 임베딩 공간에서 벡터로 매핑하여 각 노드를 벡터로 표현하는 것을 목표로 한다. 다양한 방법들이 제시되었지만 기존의 방법들은 그래프에서 노드 간의 유사성을 잘 보존할 수 없어 다양한 기계 학습에 대해 부정확한 벡터를 생성하였다. 이러한 문제를 해결하기 위해 노드 사이의 유사성을 이용한 방법이 제안되었다. 본 논문에서, 우리는 여섯 가지 실세계 데이터셋을 사용하여 세 가지 기계 학습 작업시 그래프 임베딩 방법들의 성능을 비교하여 유사성 기반의 그래프 임베딩 방법의 우수성을 확인했다.
Load/store와 같은 메모리 참조 명령어는 프로세서의 고속 수행을 방해하는 주요인이다. 캐시 선인출 기법은 메모리 참조에 따른 지연시간을 줄이는 효과적인 방법이다. 그러나 너무 적극적으로 선인출 할 경우에 캐시 오염을 유발시켜 선인출에 의한 장점을 상쇄시킨다. 본 연구에서는 캐시의 오염을 줄이기 위해 동적으로 필터 테이블을 참조하여 선인출 명령을 수행할 지의 여부를 결정하는 네 가지 필터링 기법들을 비교 평가한다. 먼저 기존 연구에서의 문제점을 분석하기 위해 이진 상태 기법을 보였는데, 이 기법은 기존 연구와 같이 N:1 매핑을 사용하는 반면, 각 엔트리의 값을 1비트로 하여 두 가지 상태값을 갖도록 하였다. 비교 연구를 위해 완전 상태 기법을 제시하여 비교 기준으로 사용하였다. 마지막으로 본 논문의 주 아이디어인 정교한 필터링을 위한 블록주소 참조 기법을 제안하였다 이 기법은 이진 상태 기법과 같은 테이블 길이를 가지며, 각 엔트리의 내용은 완전 상태 기법과 같은 항목을 가지도록 하여 최근에 미 사용된 데이타의 블록주소가 필터 테이블의 하나의 엔트리와 대응되도록 1:1 매핑을 하였다. 일반적으로 많이 사용되는 일반 벤치마크 프로그램과 멀티미디어 벤치마크 프로그램들에 대하여 실험한 결과, 제안한 블록주소 참조 기법(BAL)이 기존 연구인 동적 필터 기법(2-bitSC)과 비교하여 캐시 미스율이 10.5% 감소하였다.
대규모의 데이터를 다루는 여러 시스템에서 데이터를 다수의 병렬 디스크에 분산시켜 저장한 후 질의 처리시 동시에 여러 개의 디스크를 접근함으로써 입출력 성능의 향상을 위한 많은 노력들이 행해져 왔다. 대부분 이전 연구들은 데이터 공간을 이루는 각 차원이 겹치지 않는 여러개의 구간으로 나누어져 전체 데이터 공간이 그리드 형태로 분할되어 있다는 가정하에 각 차원의 구간 번호로 결정되는 그리드 셀에 대해서 효과적으로 디스크 번호를 할당하는 알고리즘 개발에 집중되었다. 하지만, 그들은 데이터 공간을 그리드 형태로 분할하는 방법이 전체 디클러스터링 알고리즘 성능에 미치는 영향을 간과하였다. 본 논문에서 우리는 효과적인 그리드 분할을 통하여 매핑 함수를 이용하는 디클러스터링 알고리즘의 성능을 향상 시켰다. 이를 위하여 영역 질의 크기가 주어졌을 때 겹치는 그리드 셀의 수를 예측하는 모델을 제시하였으며 이를 이용하여 가능한 그리드 분할 방법들 중에서 질의 크기를 감소시키는 분할 방법을 선택하였다. 일반적으로, 다차원 데이터에 대해서는 이진 분할을 하지만 본 논문에서는 더 작은 수의 차원을 선택해서 여러 번 분할함으로써 질의를 만족하는 그리드 셀의 수를 감소시켰다. 다양한 실험 결과에 의하면 본 논문에서 제시한 예측 모델은 질의 크기와 차원에 관계없이 0.5% 이내의 에러율을 보이는 것으로 나타났다. 또한 효과적인 그리드 분할을 통하여 다차원 데이터에 대해서 가장 성능이 좋은 것으로 소개되고 있는 Kronecker sequence 매핑 함수를 이용하는 디클러스터링 알고리즘의 성능을 최대 23배까지 향상시킬 수 있음을 알 수 있었다.
FPGA용 CAD툴에 대한 학계의 연구는 상용 FPGA에 적용하기에는 단순하고 비효율적인 아키텍처를 가정하고 있기 때문에 실용성 측면에서 뒤처져 왔다. 최근 상용 FPGA 아키텍처의 배치 위치 및 배선 그래프 데이터베이스를 구축하고 인터페이스를 제공함으로써 상용 FPGA에 적용할 수 있는 배치 배선 툴의 개발을 가능하게 하려는 시도가 있었다. 본 논문은 신규 FPGA 아키텍처로 개발되고 있는 K-FPGA의 경쟁력을 벤치마킹 할 수 있는 툴킷 개발에 대해 기술한다. 이는 학계 CAD 툴의 실용성 한계를 한층 더 확장하고 있다. 기존 상용 툴과 매핑, 패킹, 배치, 배선 각 단계 별로 데이터를 교환할 수 있어 세부 툴별 비교 평가가 가능하며 이전 단계의 결과물을 기다리거나 결과의 질에 영향을 받지 않으면서 각 단계를 독립적으로 개발할 수 있는 체계를 구축하였다. 또한, 상용 FPGA의 아키텍처를 추출하여 단위 셀 라이브러리를 구축함으로써 FPGA 아키텍처의 신규 개발 시 참조 설계 역할을 할 뿐만 아니라 상시 벤치마킹 환경을 제공하도록 하였다. 특히, 아키텍처 정보를 툴 내에 하드 코딩하지 않고 하드웨어 설계자에게 익숙한 표준 HDL 형식으로 기술하여 읽어 들일 수 있도록 함으로써 아키텍처에 수시로 다양한 변경을 시도하면서 최적화해도 툴이 유연하게 수용할 수 있는 데이터 구동 방식의 툴 개발을 추구하였다. 실험을 통해 단위 셀 라이브러리 및 툴 기능을 검증하였으며 개발 중에 변경되고 있는 FPGA 아키텍처 상에서 임의의 설계를 매핑해 보고 정상 동작할 지 시뮬레이션으로 검증할 수 있음을 확인하였다. 배치 및 배선 툴이 개발 중이며 이들이 완성되면 실용적이고 다양한 신규 FPGA 아키텍처들을 개발하고 그 경쟁력을 평가할 수 있게 될 뿐만 아니라 신규 아키텍처를 위한 최적화 CAD 툴 개발 연구가 활발해지는 시너지 효과도 기대할 수 있다.
모바일 매핑 시스템 또는 로봇이 GPS (Global Positioning System)와 다중 스테레오 카메라만 탑재 할 경우, V-SLAM(Vision based Simultaneous Localization And Mapping)에 의한 카메라 외부표정과 3차원 데이터를 GIS데이터와 연계 또는 카메라 외부표정의 누적에러를 제거하기 위해 극부 카메라 좌표계에서 GPS (Global Positioning System) 좌표계로 변환이 필요로 한다. 이 요구사항을 만족시키기 위해, 본 논문은 GPS와 V-SLAM에 의한 3쌍의 카메라의 위치를 이용하여 GPS좌표계에서 카메라 자세를 계산하는 새로운 방법을 제안하였다. 제안한 방법은 간단한 4단계로 구성되어 있다; 1)각 3개의 카메라 위치에 기반한 두 평면 법선벡터가 병렬이되도록 하는 사원수 (quaternion)를 계산한다, 2) 계산된 사원수를 통하여 V-SLAM에 의한 3개의 카메라 위치를 변환한다, 3) 변환된 위치에서 두번째 또는 세번째 점이 GPS에 의한 점과 일치하도록 하는 두번째 사원수를 계산한다, 4)두 사원수의 곱을 통하여 최종 사원수 결정한다. 최종 사원수는 극부 카메라 좌표계에서 GPS좌표계로 변환할 수 있다. 추가적으로, 촬영된 물체 위치에서 카메라를 보는 시야각을 기반으로 물체의 3차원좌표 갱신방법을 제안하였다. 본 논문은 제안한 방법을 시뮬레이션과 실험을 통하여 증명하였다.
로봇이 자율주행을 하는데 있어 중요한 요소는 로봇 스스로 위치를 추정하고 동시에 주위 환경에 대한 지도를 작성하는 것이다. 본 논문에서는 어안렌즈를 이용한 비전 기반 위치 추정 및 매핑 알고리즘을 제안한다. 로봇에 어안렌즈가 부착된 카메라를 천정을 바라볼 수 있도록 부착하여 스케일 불변 특징을 갖는 고급의 영상 특징을 구하고, 이 특징들을 맵 빌딩과 위치 추정에 이용하였다. 전처리 과정으로 어안렌즈를 통해 입력된 영상을 카메라 보정을 행하여 축방향 왜곡을 제거하고 레이블링과 컨벡스헐을 이용하여 보정된 영상에서 천정영역과 벽영역으로 분할한다. 최초 맵 빌딩시에는 분할된 영역에 대해 특징점을 구하고 맵 데이터베이스에 저장한다. 맵 빌딩이 종료될 때까지 연속하여 입력되는 영상에 대해 특징점들을 구하고 맵과 매칭되는 점들을 찾고 매칭되지 않은 점들에 대해서는 기존의 맵에 추가하는 과정을 반복한다. 위치 추정은 맵 빌딩 과정과 맵 상에서 로봇의 위치를 찾는데 이용된다. 로봇의 위치에서 구해진 특징점들은 로봇의 실제 위치를 추정하기 위해 기존의 맵과 매칭을 행하고 동시에 기존의 맵 데이터베이스는 갱신된다. 제안한 방법을 적용하면 50㎡의 영역에 대한 맵 빌딩 소요 시간은 2분 이내, 위치 추정시 위치 정확도는 ±13cm, 로봇의 자세에 대한 각도 오차는 ±3도이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.