• Title/Summary/Keyword: 가혹 환경

Search Result 174, Processing Time 0.025 seconds

An Electrochemical Evaluation on the Corrosion Property of Metallizing Film (용사 도막의 내식성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Shin, Joong-Ha;Lee, Myung-Hoon;Lee, Sung-Yul;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.670-677
    • /
    • 2010
  • There are many surface protection methods for numerous steel structures being used under severely corrosive environment, one of them, metallizing(thermal spray) is a available protection method which is comparatively and recently developed for surrface protection of various steel structures. However coating film obtained by spraying is to be needed increasingly more good corrosion resistance due to accelerating of environmental contamination. In this study, coating films(DFT:$200{\mu}m$) are performed with arc spray by wire metal and their types of films are pure zinc, pure aluminum, alloy film(Al:Zn=85:15) and alloy film(Al:Zn=95:5). And corrosion resistance of their films was investigated with electrochemical methods in seawater solution. Pure aluminum film showed a relatively somewhat good corrosion resistance compared to among those of other films and alloy films also showed a good corrosion resistance compared to pure zinc film. Especially it was observed that pure aluminum film showed a comparatively good corrosion resistance than that of alloy film named as galvarium spray(Al:Zn=85:15) in seawater solution. Morphology of corroded surface of pure zinc film appeared the pattern like intergranlar corrosion, however films of pure aluminum and alloy metal showed a general corrosion pattern.

Failure Analysis by Fracture Study of Connecting Rod Bolts in Diesel Engine for Military Tracked Vehicles (군용 궤도차량 디젤엔진의 커넥팅 로드 볼트 파손 검토를 통한 고장원인분석)

  • Oh, Dae San;Kim, Ji Hoon;Seo, Suk Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.191-200
    • /
    • 2020
  • Tracked military vehicles are operated under harsher conditions and climates than ordinary vehicles, and the components require high degrees of reliability and durability. A diesel engine is the main power generator, and when the vehicle breaks down, there is a high possibility of causing a large-scale accident. Therefore, analyzing the cause of engine failure can be important for preventing similar cases that may occur. In this study, we clarified the mechanism of engine failure according to an overhaul test, hardness measurement, and an analysis of the fracture surface. The overhaul test confirmed that a bolt was separated from the connecting rod (number 4). In addition, the hardness measurement results of the connecting rod bolt conformed to the standard, and it was found that the bolt fracture was ductile fracture through an analysis of the fracture surface. Based on the results, it was concluded that damage to a diesel engine of a tracked military vehicle was caused by separating and damage caused by loosening of the connecting rod bolts, resulting in cascading damage. The results of the study could be used as reference examples and could be useful for another study on engine failure analysis.

Structure & Installation Engineering for Offshore Jack-up Rigs

  • Park, Joo-Shin;Ha, Yeong-Su;Jang, Ki-Bok;Radha, Radha
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • Jack-up drilling rigs are widely used in offshore oil and gas exploration industry. It is originally designed for use in the shallow waters less than 60m of water depth; there is growing demand for their use in deeper water depth over 150m and harsher environmental conditions. In this study, global in-place analysis of jack-up rig leg for North-sea oil well is performed through numerical analysis. Firstly, environmental conditions and seabed characteristics at the North-sea are collected and investigated measurements from survey report. Based on these data, design specifications are established and the overall basic design is performed. Dynamic characteristics of the jack-up rig for North-sea are considered in the global in-place analysis both leg and hull and the basic stability against overturning moment is also analyzed. The structural integrity of the jack-up rig leg/hull is verified through the code checks and the adequate safety margin is observed. The uncertainty in jack-up behaviour is greatly influenced by the uncertainties in the soil characteristics that determine the resistance of the foundation to the forces imposed by the jack-up structure. Among the risks above mentioned, the punch-through during pre-loading is the most frequently encountered foundation problem for jack-up rigs. The objective of this paper is to clarify the detailed structure and installation engineering matters for prove the structural safety of jack-up rigs during operation. With this intention the following items are addressed; - Characteristics of structural behavior considering soil effect against environmental loads - Modes of failure and related pre-loading procedure and parameters - Typical results of structural engineering and verification by actual measurement.

  • PDF

A Study on Design for Reliability for the PBA of Warship based on Reliability Physics Analysis (신뢰성 물리학 분석 기반 함정탑재 PBA 신뢰성 설계에 대한 연구)

  • Cha, Jong-Han;Park, Kyoung-Deok;Lee, Ki-Won;Bak, Byeong-Ho;Kim, Hee-Earn;Kwon, Hyeong-Ahn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.535-545
    • /
    • 2019
  • The PBA of ship weapon system should be installed and operated under harsh environmental conditions and so it should be highly reliable to endure the mission profiles during its entire lifetime. In the case of PBA failure during operation, rapid maintenance is highly likely to be difficult due to problems such as supply of parts, which can have a devastating effect on the mission. In order to validate the reliability of PBA, a series of tests are performed with PBA samples, but they require time, testing facilities, samples, expenses and failure analysis if failed. The reliability of PBA is predicted on the basis of specifications such as MIL-HDBK-217F, but this specification does not take into account failure mechanisms for specific design details, environment and usage, interconnects and its characteristics that drive many failures of PBA in the field. Therefore, this study predicts the reliability of PBA using an RPA tool and proposes the RPA methodology as a validation process at the design stage. With RPA, it is now possible to achieve design validation including inherent failure mechanism, identification of weakest link, alternative design options, and test plan development.

Influence of Crystal Orientation on Corrosion Resistance of Al-Mg films on steel substrate prepared by PVD method (PVD법에 의해 강판상에 제작한 Al-Mg 코팅막의 내식성에 미치는 결정배향성의 영향)

  • Hwang, Seong-Hwa;Park, Jae-Hyeok;Jeong, Jae-In;Yang, Ji-Hun;Yun, Yong-Seop;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.110-110
    • /
    • 2016
  • 금속재료 중 철강은 기계적 성질이 우수하고 대량생산에 의한 뛰어난 경제성을 가지기 때문에 다양한 산업 분야에서 널리 사용되고 있다. 그러나 스테인리스강 등과 같은 일부 특수한 용도의 강을 제외하고는 부식 환경에 취약하기 때문에 그 용도에 따라 표면처리를 함으로서 내식특성을 부여하고 있다. 일반적으로 이러한 철강재료에 대한 부식문제를 해결하기 위한 방법으로는 습식프로세스 중 아연(Zn)도금이 사용되는데, 아연은 그 자체가 보유하고 있는 차폐(barrier)효과는 물론 상대적으로 이온화 경향이 크기 때문에 철에 대하여 전자를 공급하는 희생양극적(Sacrificial anode)역할을 하여 철을 방식하는 원리를 가지고 있다. 하지만 최근에 이르러 기존의 도금 프로세스 처리된 제품의 사용 및 적용분야가 확대되고 가혹해 짐에 따라서 내식성 향상을 위한 새로운 재료 및 신기술 개발이 요구되고 있는 실정이다. 본 연구에서는 친환경 프로세스 방법인 PVD법 중 하나인 스퍼터링(Sputtering)을 이용하여 0.8mm 두께의 냉연강판 (cold rolled steel) 상에 Al에 대한 Mg 함량을 10~30wt.%로 하여 약 $5{\mu}m$ 두께의 막을 제작하였다. 이때 20wt.% 막의 경우 공정압력조건을 증가시켜 증착 막의 결정배향성을 변화시켰다. 뿐만 아니라 제작된 막들에 대해서 $400^{\circ}C$온도에서 10분간 열처리함으로서 코팅막의 성분변화에 따른 영향을 살펴보기 위해 시편을 추가 제작하였다. 이와 같이 제작된 막들에 대한 형성메커니즘과 내식성의 상관관계 해명을 위해 막의 조성분포, 표면 및 단면의 모폴로지 관찰 및 결정구조 등 재료특성분석과 더불어 염수분무(Salt spray test), 침지시험 그리고 양극분극 시험 등을 통해 내식성 평가를 진행하였다. 이상의 종합적인 결과를 살펴보면 제작된 Al-Mg 막은 마그네슘 함량비 및 열처리 조건에 따라 조성분포와 막의 모폴로지 및 결정배향성이 변화한다는 것을 알 수 있었는데, 마그네슘 함량이 증가하고 열처리한 막의 내식성이 가장 양호한 것으로 나타났다. 이것은 Al-Mg 성분이 표면을 중심으로 균일 분산-분포하며, Al에 대한 Mg의 고용으로 인해 안정적으로 형성된 부식생성물과 금속화합물의 단계적 반응 효과에 의해 차폐효과와 희생양극적 특성이 동시에 향상되었기 때문으로 생각된다. 한편 공정 압력을 증가시켜 형성한 막은 결정학적 구조에서 보다 높은 표면 에너지와 증가한 격자 정수에 의해 Mg이 부식환경에서 빠르게 반응하여 안정적 피막을 형성하기 때문에 내식성이 향상된 것으로 보여 진다. 이상의 연구를 통해서 고내식성을 Al-Mg막의 유효성 확인하였으며, 설계에 대한 기초적인 응용지침을 제시할 수 있을 것으로 사료된다.

  • PDF

A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions (고압터빈 노즐에서 입구온도분포와 장착조건에 따른 저주기 피로 수명 영향에 대한 연구)

  • Huh, Jae Sung;Kang, Young Seok;Rhee, Dong Ho;Seo, Do Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1145-1151
    • /
    • 2015
  • High pressure components of a gas turbine engine must operate for a long life under severe conditions in order to maximize the performance and minimize the maintenance cost. Enhanced cooling design, thermal barrier coating techniques, and nickel-base superalloys have been applied for overcoming them and furthermore, material modeling, finite element analysis, statistical techniques, and etc. in design stage have been utilized widely. This article aims to evaluate the effects on the low cycle fatigue life of the high pressure turbine nozzle caused by different turbine inlet temperature profiles and installation conditions and to investigate the most favorable operating condition to the turbine nozzle. To achieve it, the structural analysis, which utilized the results of conjugate heat transfer analysis as loading boundary conditions, was performed and its results were the input for the assessment of low cycle fatigue life at several critical zones.

An Electrochemical Evaluation of the Corrosion Properties of the Steel with the Type and the Thickness of Metallizing Coatings (금속용사 코팅제의 종류 및 두께에 따른 강재 내식성의 전기화학적 평가)

  • Kang, Myeong-Sik;Eom, Sung-Hyun;Cho, Yeon-Chul;Ahn, Jae-Woo;Kim, Seong-Soo;Lee, Jeong-Bae
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.55-62
    • /
    • 2016
  • Steel structures exposed to extremely corrosive environment like marine environments and industrial area are generally manufactured by applying various protection treatment to increase their lifetime. Metal spraying is one of the protection methods to overcome some drawbacks of the widely employed technologies. Therefore, lots of research needs to be done to improve the corrosion resistance of steel structures. In this study, the corrosion resistance of steel structures was evaluated with the variation in the type and thickness of metal spray by measuring the corrosion potential and current density. As a raw material for spraying, Zn, Al and their mixture were employed to obtain coating thickness of $30{\sim}100{\mu}m$. Our data indicated that the pure zinc coating with $100{\mu}m$ showed the lowest corrosion potential. In the case of pure Al and Zn 85%-Al 15%, the corrosion potential and current density was decreased compared to pure zinc. It was found that the corrosion potential was decreased with the increase of coating thickness irrespective of the type of the coating.

A Study on the Anti-Corrosion Paint(EH 2350) Compatibility Verification for Naval Surface Vessels's Cavitation (캐비테이션 발생에 따른 해군 수상함정 방청도료(EH 2350) 적합성 검증에 관한 연구)

  • Choi, Sang-Min;Lee, Ji-Hyeog;Beak, Yong-Kawn;Jeong, Hyeon-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2019
  • The naval surface vessels, which were often exposed to harsh marine environment, tended to be corrosive due to military operations on various sea-areas and courses. Although R.O.K Navy applied various methods to protect further corrosion, the hull corrosion occurred due to cavitation were found on the naval surface vessels at regular and occasional docking. Hull corrosion was a critical factor directly to affect the lifetime of ships and their operational capabilities adversely. In this paper, EH 2350, which was the main anticorrosion paint used by R.O.K. Navy, was compared with DuraTough DL by used by the U.S Navy to collect materials related to anti-corrosion paint. In addition, the paint compatibility verification was conducted through wear abrasion test. Assuming that it was exposed to sea-environment various both abrasion cycle and weight for objective verification. by varying both the abrasion cycles and weights. In this study, the reliability of the EH 2350 conformity, which was used in Naval surface vessels, was secured.

A Basic Study on the Generation of Tire & Road Wear Particles by Differences in Tire Wear Performance (타이어 마모성능 차이에 의한 타이어 마모입자 생성에 관한 기초 연구)

  • Kang, Tae-Woo;Kim, Hyeok-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.561-568
    • /
    • 2021
  • In this study, in order to observe the change in the amount of Tire and Road Wear Particles and the ratio of tire components in it according to the tire wear resistance performance, carried out the evaluation by varying the vulcanization reaction design of the tire tread rubber. In addition, in order to improve the reliability of the evaluation of Tire and Road Wear Particles, the evaluation was performed indoor laboratory test equipment that simulates the condition on real driving to exclude various environmental influences including minerals, driver's habits, road surface, weather, tire structure and pattern designs. After the evaluation in closed space, it is estimated that the amount of collected Tire and Road Wear Particles is 84% compared to 100% of the tire and road wear loss weight, of which 96.4~97.7% was around the road and 2.3~3.6% was in the air. As a result of analy sis of the collected Tire and Road Wear particles, the tire component existed 63~75% in the Tire and Road Wear Particles depending on the wear resistance performance of the tire.

A Study on Load-carrying Capacity Design Criteria of Jack-up Rigs under Environmental Loading Conditions (환경하중을 고려한 Jack-up rig의 내하력 설계 기준에 대한 연구)

  • Park, Joo Shin;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • Jack-up drilling rigs are widely used in the offshore oil and gas exploration industry. Although originally designed for use in shallow waters, trends in the energy industry have led to a growing demand for their use in deep sea and harsh environmental conditions. To extend the operating range of jack-up units, their design must be based on reliable analysis while eliminating excessive conservatism. In current industrial practice, jack-up drilling rigs are designed using the working(or allowable) stress design (WSD) method. Recently, classifications have been developed for specific regulations based on the load and resistance factor design (LRFD) method, which emphasises the reliability of the methods. This statistical method utilises the concept of limit state design and uses factored loads and resistance factors to account for uncertainly in the loads and computed strength of the leg components in a jack-up drilling rig. The key differences between the LRFD method and the WSD method must be identified to enable appropriate use of the LRFD method for designing jack-up rigs. Therefore, the aim of this study is to compare and quantitatively investigate the differences between actual jack-up lattice leg structures, which are designed by the WSD and LRFD methods, and subject to different environmental load-to-dead-load ratios, thereby delineating the load-to-capacity ratios of rigs designed using theses methods under these different enviromental conditions. The comparative results are significantly advantageous in the leg design of jack-up rigs, and determine that the jack-up rigs designed using the WSD and LRFD methods with UC values differ by approximately 31 % with respect to the API-RP code basis. It can be observed that the LRFD design method is more advantageous to structure optimization compared to the WSD method.