• Title/Summary/Keyword: 가하중

Search Result 465, Processing Time 0.031 seconds

Effect of water storage on the fracture toughness of dental resin cement used for zirconia restoration (수분이 지르코니아 수복물 전용 레진시멘트의 파괴인성에 미치는 영향에 관한 연구)

  • Goo, Bon-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.312-316
    • /
    • 2014
  • Purpose: The aim of this study was to compare the fracture toughness of currently available resin cements for zirconia restorations and evaluate the effect of water storage on fracture toughness of those resin cements. Materials and methods: Single-edge notched specimens ($3mm{\times}6mm{\times}25mm$) were prepared from three currently available dual cure resin cements for zirconia restorations (Panavia F 2.0, Clearfil SA luting and Zirconite). Each resin cement was divided into four groups: immersed in distilled water at $37^{\circ}C$ for 1 (Control group), 30, 90, or 180 days (n=5). Specimens were loaded in three point bending at a cross-head speed of 0.1 mm/s. The maximum load at specimen failure was recorded and the fracture toughness ($K_{IC}$) was calculated. Data were analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test (${\alpha}$=.05). Results: In control group, the mean $K_{IC}$ was $3.41{\pm}0.64MN{\cdot}m^{-1.5}$ for Panavia F, 2.0, $3.07{\pm}0.41MN{\cdot}m^{-1.5}$ for Zirconite, $2.58{\pm}0.30MN{\cdot}m^{-1.5}$ for Clearfil SA luting respectively, but statistical analysis revealed no significant difference between them. Although a gradual decrease of $K_{IC}$ in Panavia F 2.0 and gradual increases of KIC in Clearfil SA luting and Zirconite were observed with storage time, there were no significant differences between immersion time for each cement. Conclusion: The resin cements for zirconia restorations exhibit much higher $K_{IC}$ values than conventional resin cements. The fracture toughness of resin cement for zirconia restoration would not be affected by water storage.

Retrospective study of implant stability according to the implant length, diameter and position (임플란트 길이, 직경 및 식립 위치에 따른 임플란트 안정성에 관한 후향적 연구)

  • Kim, Ji-Hye;Jeon, Jin-Yong;Heo, Yu-Ri;Son, Mee-Kyoung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.269-275
    • /
    • 2013
  • Purpose: The aim of this retrospective study was to evaluate the influence of implant diameter, length and placement to implant stability. Materials and methods: Total 90 implants (US II plus$^{TM}$, Osstem co, Busan, Korea) of 72 patients were determined as experimental samples. The factors of diameters(${\phi}$ 4 mm, ${\phi}$ 5 mm), lengths (10 mm, 11.5 mm, 13 mm), and implant placement (maxilla, mandible) were analyzed. The stability of the implants was measured by resonance frequency analysis (RFA) at the time of implant placement and impression taking. The difference of ISQ values according to patient's gender was evaluated by Independent t-test. ISQ values were compared between implant diameter, length and placement using one-way ANOVA and Tukey HSD test (${\alpha}=.05$). To compare ISQ values between at the time of surgery and impression taking, paired t-tests were used (${\alpha}=.05$). Results: The change of implant length did not show significant different on the ISQ value (P>.05). However, 5 mm diameter implants had higher ISQ values than 4 mm diameter implants (P<.05). Implants placed on the mandible showed significantly higher ISQ values than on the maxilla (P<.05). Conclusion: In order to increase implant stability, it is better to select the wider implant, and implants placed on mandible are possible to get higher stability than maxilla. ISQ values at impression taking showed higher implant stability than ISQ values at implant placement, it means that RFA is clinically effective method to evaluate the change of implant stability through the osseointegration. The consideration of the factors which may affect to the implant stability will help to determine the time of load applying and increase the implant success rate.

A Study on the Static Behaviors of Steel Deck Plates of Skew Bridges (사교(斜橋)의 강상판(鋼床板)의 정적거동(靜的擧動)에 대한 연구(研究))

  • Yang, Chang Hyun;Oh, Gi Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.815-826
    • /
    • 1994
  • Skew bridges are found frequently in new bridge construction due to geographical conditions when new constructing bridges are put across the existing highways, railroads or rivers. This study is to investigate the static behaviors of the steel deck plates of skew bridges which are increasingly used in bridges due to outstanding quality of structural steels, development of welding techniques, in order to reduce dead loads and period of constructions. The static behaviours of steel deck plates are analyzed using general purpose FE code SAP90 by modeling the skewed deck plates with rigorous finite elements, as the skew angles vary. The results of finite element analysis for the behaviors of steel deck plates and concrete slabs in acute, obtuse corners and center of decks are compared and discussed as the skew angles vary from $90^{\circ}$ to $30^{\circ}$. Two types of decks are treated, as isotropic plates and orthotropic plates, respectively. From the results of finite element analysis, it is found that more moments, reactions, and deflections occur at the obtuse corners than at the center of skewed decks regardless of isotropy or orthotropy. Especially, in case of the skewed deck plates with skew angles less than 45 degrees, significantly large discrepancies for the values of those internal forces are shown between the skewed and right deck plates. This study estimates the characteristics of deck behaviors according to skew angles, and proposes limitations of skew angles and the ciritical regions of decks.

  • PDF

The Effect of Photoneutron Dose in High Energy Radiotherapy (10 MV 이상 고에너지 치료 시 발생되는 광중성자의 영향)

  • Park, Byoung Suk;Ahn, Jong Ho;Kwon, Dong Yeol;Seo, Jeong Min;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Purpose: High-energy radiotherapy with 10 MV or higher develops photoneutron through photonuclear reaction. Photoneutron has higher radiation weighting factor than X-ray, thus low dose can greatly affect the human body. An accurate dosimetric calculation and consultation are needed. This study compared and analyzed the dose change of photoneutron in terms of space according to the size of photon beam energy and treatment methods. Materials and Methods: To measure the dose change of photoneutron by the size of photon beam energy, patients with the same therapy area were recruited and conventional plans with 10 MV and 15 MV were each made. To measure the difference between the two treatment methods, 10 MV conventional plan and 10 MV IMRT plan was made. A detector was placed at the point which was 100 cm away from the photon beam isocenter, which was placed in the center of $^3He$ proportional counter, and the photoneutron dose was measured. $^3He$ proportional counter was placed 50 cm longitudinally superior to and inferior to the couch with the central point as the standard to measure the dose change by position changes. A commercial program was used for dose change analysis. Results: The average integral dose by energy size was $220.27{\mu}Sv$ and $526.61{\mu}Sv$ in 10 MV and 15 MV conventional RT, respectively. The average dose increased 2.39 times in 15 MV conventional RT. The average photoneutron integral dose in conventional RT and IMRT with the same energy was $220.27{\mu}Sv$ and $308.27{\mu}Sv$ each; the dose in IMRT increased 1.40 times. The average photoneutron integral dose by measurement location resulted significantly higher in point 2 than 3 in conventional RT, 7.1% higher in 10 MV, and 3.0% higher in 15 MV. Conclusion: When high energy radiotherapy, it should consider energy selection, treatment method and patient position to reduce unnecessary dose by photoneutron. Also, the dose data of photoneutron needs to be systematized to find methods to apply computerization programs. This is considered to decrease secondary cancer probabilities and side effects due to radiation therapy and to minimize unnecessary dose for the patients.

  • PDF

Influence of crestal module design on marginal bone stress around dental implant (임플란트 경부 디자인이 변연골 응력에 미치는 영향)

  • Lim, Jung-Yoel;Cho, Jin-Hyun;Jo, Kwang-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.3
    • /
    • pp.224-231
    • /
    • 2010
  • Purpose: This study was to investigate how the crestal module design could affect the level of marginal bone stress around dental implant. Materials and methods: A submerged implant of 4.1 mm in diameter and 10 mm in length was selected as baseline model (Dentis Co., Daegu,Korea).A total of 5 experimental implants of different crestal modules were designed (Type I model : with microthread at the cervical 3 mm, Type II model : the same thread pattern as Type I but with a trans-gingival module, Type III model: the same thread pattern as the control model but with a trans-gingival module, Type IV model: one piece system with concave transgingival part, Type V model: equipped with beveled platform). Stress analysis was conducted with the use of axisy mmetric finite element modeling scheme. A force of 100 N was applied at 30 degrees from the implant axis. Results: Stress analysis has shown no stress concentration around the marginal bone for the control model. As compared to the control model, the stress levels of 0.2 mm areas away from the recorded implant were slightly lower in Type I and Type IV models, but higher in Type II, Type III and Type V models. As compared to 15.09 MPa around for the control model, the stress levels were 14.78 MPa, 18.39 MPa, 21.11 MPa, 14.63 MPa, 17.88 MPa in the cases of Type I, II, III, IV and V models. Conclusion: From these results, the conclusion was drawn that the microthread and the concavity with either crestal or trans-gingival modules maybe used in standard size dental implants to reduce marginal bone stress.

Comparative study of fracture strength depending on the occlusal thickness of full zirconia crown (완전 지르코니아 크라운의 교합면 두께에 따른 파절강도의 비교 연구)

  • Jang, Soo-Ah;Kim, Yoon-Young;Park, Won-Hee;Lee, Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.160-166
    • /
    • 2013
  • Purpose: The purpose of this study was to compare the fracture strength of traditional metal-ceramic crowns and full zirconia crowns according to the occlusal thickness. Materials and methods: A mandibular first molar resin tooth was prepared with 1.5 mm occlusal reduction, 1.0 mm rounded shoulder margin and $6^{\circ}$ taperness in the axial wall. Duplicating the resin tooth, 64 metal dies were fabricated. 48 full zirconia crowns were fabricated using Prettau zirconia blanks by ZIRKONZAHN CAD/CAM and classified into six groups according to the occlusal thickness (0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm). 16 metal-ceramic crowns were fabricated and classified into two groups according to the occlusal porcelain thickness (1.0 mm, 1.5 mm). All crowns were cemented on each metal die and mounted in a universal testing machine. The load was directed at the functional cusp of each specimen until catastrophic failure occurred. One-way ANOVA, Tukey multiple comparison test (${\alpha}=.05$) and t-test (${\alpha}=.05$) were used. Results: The results were as follows. 1. The test 1 group (646.48 N) showed the lowest fracture strength (P<.05), and the value of the test 2.3.4.5 groups (866.40 N, 978.82 N, 1196.82 N, 1222.41 N) increased as thickness increased, but no significant difference were found with the groups (P>.05). The value of test 6 group (1781.24 N) was significantly higher than those of the other groups (P<.05). 2. There were no significant differences of the fracture strength of metal ceramic crowns according to occlusal porcelain thickness 1.0 mm (2515.71 N) and 1.5 mm (3473.31 N) (P<.05). Conclusion: Full zirconia crown needs to be 1.0 mm or over in occlusal thickness for the posterior area to have higher fracture strength than maximum bite force.

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

Bone Density and Related Factors of University Students in the Seoul Area (서울지역 대학신입생의 골밀도에 미치는 영향요인에 관한 연구)

  • Chung, Nam-Yong;Choi, Soon-Nam
    • Korean journal of food and cookery science
    • /
    • v.20 no.5
    • /
    • pp.468-479
    • /
    • 2004
  • This study was conducted to investigate factors affecting the bone density of university students in the Seoul area. Data for food habits, and dietary and health-related behavior was obtained by self-administered questionnaires. BQI (bone quality index) of the subjects was measured by a Quantitative Ultrasound (QUS). The results are summarized as follows. The average height, weight, BMI and osteopenia percentage were 175.4cm, 69.3kg, 22.5 and 15.6% for male students, and 161.5cm, 55.9kg, 21.7 and 34.1%, for female students, respectively. The mean BQI of the subjects was 110.25 (range 60.7 ~ 176.8) in male students and 90.64 (range 52.9 ~ 137.5) in female students. Height and weight were significantly related with BQI in the female group but the relationship with BMI was not significantly related with bone density in either group. BQI was positively affected by nutrition supplement in the male student group. One-side eating, diet, and intake of milk and instant food were not significantly related with BQI in males or females. The results of this study revealed that desirable food habits, dietary behavior and health-related lifestyle may have a beneficial effect on bone density. There should be established a practically and systematically organized nutritional education on optimum body weight, good eating habits, weight bearing exercise and intakes of good quality nutrient for higher bone density level.

Study on Fire Hazard Analysis along with Heater Use in the Public Use Facility Traditional Market in Winter (겨울철 다중이용시설인 전통재래시장 난방기구 사용에 따른 화재 위험성 분석에 관한 연구)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.583-597
    • /
    • 2014
  • Fire caused by heater has various causes as many as the types of heater. also, lots of damage of human life and property loss are caused, since annually continuous fire accident by heater in traditional market is frequently occurring. There are not many cases of fire due to heater in most of residential facilities such as general house, apartments, etc., because they are supplied with heating boiler, however the restaurant, store and office of the market, sports center, factory, workplace, etc. still use heater, e.g. oilstove, electric heater, etc., so that they are exposed to fire hazard. Also, when investigating the number of fire due to heater, it was analyzed to occur in order of home boiler, charcoal stove, oilstove, gas heater/stove, electric stove/heater, the number of fire per human life damage was analyzed in order of gas heater/stove, oil heater/stove, electric heater/stove, briquette/coal heater. Also, gas and oil related heater were analyzed to have low frequency, however, with high fire intensity. Therefore, this research aimed at considering more scientific fire inspection and identification approach by reenacting and reviewing fire outbreak possibility caused by combustibles' contact and conductivity under the normal condition and abnormal condition in respect of ignition hazard, i.e. minimum ignition temperature, carbonization degree and heat flux along with it, due to oilstove and electric stove, which are still frequently used in public use facility, traditional market, and, of which actual fire occurrence is the most frequent. As the result of reenact test, ignition hazard appeared very small, as long as enough heat storage condition is not made in both test objects(oilstove/electric stove), however carbonization condition was analyzed to be proceeded per each part respectively. Eventually, transition to fire is the ignition due to heat storage, so that it was analyzed to ignite when minimum heat storage temperature condition of fire place is over $500^{\circ}C$. Particularly, in case of quartz pipe, the heating element of electric stove, it is rapidly heated over the temperature of $600^{\circ}C$ within the shortest time(10sec), so that the heat flux of this appears 6.26kW/m2, which was analyzed to result in damage of thermal PVC cable and second-degree burn in human body. Also, the researcher recognized that the temperature change along with Geometric View Factor and Fire Load, which display decrease of heat, are also important variables to be considered, along with distance change besides temperature condition. Therefore, the researcher considers that a manual of careful fire inspection and identification on this is necessary, also, expects that scientific and rational efforts of this research can contribute to establish manual composition and theoretical basis on henceforth fire inspection and identification.

A Study on the Ship`s Collision Avoiding Action Analyzed from a Viewpoint of Ship Kinematics (선체운동학적으로 본 충돌회피동작에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.97-112
    • /
    • 1978
  • The rule 15, 16 and 17 of International Regulations for Preventing collisions at Sea direct actions to avoid collision when two power-driven vessels are crossing. But these rules do not present the safety minimum approaching distances outside which a give- way vessel deeps out of the way of a stand-on vessel. In this paper, the author analyzed the ship's collision avoiding actions from a viewpoint of ship kinematics as the method to calculate this distance. The author worked out mathematic formulas for calculating the safety minimum approaching distances outside which the give-way vessel takes the actions to avoid collisions in accordance with the cross angles of the crossing vessels' courses. Figuring out actually the values of maneuvering indices of the M. S. Koan Ack San (GT: 224tons), the training ship of the National Fisheries University of Busan and the M. S. Golden Clover (GT: 101, 235tons) of the Eastern Shipping Co., Ltd. through their Z test, the author applied these values to the calculating formulas and calculated the safety minimum approaching distances. The results of calculations are as follows; 1. The greatest distance is to be kept by the give-way vessel to avoid collision when the cross angle of courses is 90$^{\circ}$ or near it. In such case the safety minimum approaching distance of a small vessel must be more than 5 times of her own length and that of a large vessel more than 11 times of her own length. 2. Collision danger is greater when crossing angle is obtuse than in an acute angle, therefore greater distance is to be kept by the give-way vessel to avoid collision in the case of the obtuse angle. 3. The actions to be taken to avoid collisions by the give-way vessel in Rule 16 and by the stand-on vessel in Rule 17(a)(ii) of International Regulations for Preventing Collisions at Sea, must be done outside the above safety minimum approaching distance. When inevitably such actions are to be taken within the safety minimum approaching distance, they should be accompanied with engine motions.

  • PDF