• Title/Summary/Keyword: 가축폐수

Search Result 56, Processing Time 0.024 seconds

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Precision Monitoring (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(II): 도시가스 및 수송용 - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • This study carried out on-site investigation and precision monitoring to prepare proper design and operation technical guidelines for the use of bio gas in organic waste resources (fertilizing urine, food waste, food waste, food waste, etc.). According to the government's mid- and long-term policy on bio gasification, the expansion of waste resources is actively being pushed forward. However, facilities that use the biogas produced for urban gas and transportation are still under-efficient. Precision monitoring was carried out for biogasification facilities of organic waste resources in seven locations nationwide. When the results of precision monitoring were summarized with the four-season average, the efficiency analysis of each organic waste resource showed that the organic breakdown rate was 66.3% on average on VS basis. Analysis of biogas characteristics before and after pretreatment revealed that the $H_2S$ average of the entire facility was measured at 949.7 ppm using iron salts and desulfurization (dry, wet) and that the quality refining facility shearing and rear end was 29.0 ppm and 0.3 ppm. The methane content was found to be reduced by 65.6% at the rear of the fire tank, 63.5% at the back and 97.5% at the rear.

Assessment of water quality index suitability of domestic watersheds (국내유역의 수질지수 적합성 평가)

  • Lee, Sangung;Jo, Bugeon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.371-381
    • /
    • 2022
  • Since tributaries have greater water quality variability than main streams, a comprehensive evaluation method that considers the effects of various parameters rather than one water quality parameter has been introduced for effective water quality management of tributaries, but the characteristic of the watershed is not considered. In this study, the urbanization rate, livestock excreta generation, and industrial wastewater discharge in the Hantan River middle-watershed classify urban and non-urban watersheds, and evaluate the suitability of water quality indexes by watershed characteristics by analyzing water quality characteristics and calculating CCME WQI, RTWQI, and NSFWQI. Factor analysis was used to understand the effect of water quality parameters used to calculate the water quality index on the water quality index results. As a result of the factor analysis, the relationship between CCME WQI, TC, and FC was derived, and the relationship between RTWQI and DO, SS in urban watersheds and NSFWQI and FC in non-urban watersheds was revealed. As a result of evaluating suitability through comparison with BOD and T-P grades, it was interpreted that the suitability of the water quality index was low in urban watersheds and that comprehensive water quality evaluation using RTWQI was possible in non-urban watersheds.

Geochemical and Isotopic Study of the Kumho River (금호강 하천수의 지구화학 및 동위원소 연구)

  • Kim, Yeong-Kyoo;Nam, Eun-Kyung
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.527-539
    • /
    • 2009
  • The Kumho River flows through volcanic and sedimentary rocks at upstream and downstream regions and also through industrial district including dyeing complex before it meets the Nakdong River, and as a result, many factors can influence the geochemistry of river water. The concentrations of dissolved ions generally increased as it flows downstream. The concentrations of cations are in the order of Ca>Na>Mg>K, and those of anions are $HCO_3$>$SO_4$>Cl>$NO_3$. These results show that the weathering of sandstone and shale containing carbonate including calcite caused the enrichment of Ca and $HCO_3$. At first 4 sampling sites, Si contents are relatively high mainly due to the weathering of silicate minerals of volcanic rocks. However, Na and $SO_4$ contents are higher at downstream sites due to the industrial and municipal sewage. Piper diagram also shows that the geochemical patterns changed from Ca-$HCO_3$ to Ca-Cl/Ca-$SO_4$ and Na-Cl/Na-$SO_4$ type. When comparing the samples collected in May and July, the concentrations of dissolved ions in July are generally lower than those in May, which indicates that dilution by precipitation played an important role. In July the relative concentration of Ca increased, indicating that Ca in soils probably from fertilizer were mixed into the river water by precipitation. The river waters are mainly from precipitation. The dissolved ions are mainly from weathering of carbonate minerals and pollutants from municipal sewage and discharged water from industrial complex. The composition of oxygen and deutrium isotope in July showed higher values, which is contrary to the amount effect, maybe due to Youngchon Dam. The nitrogen isotope showed lower values in July than those in May, which can be interpreted to indicate mixing of nitrate from soils and fertilizer in the cultivated land by the heavy rain. The isotope composition of nitrate increased downstream, indicating that the influence of sewage and animal manure also increased downstream.

Conditions for Artificial Culture of Lemna Paucicostata and Potentiality as an Alternative Biomass Source (바이오매스 자원으로서의 Lemna Paucicostata의 인공배양조건과 이화학적 특성에 관한 연구)

  • Kwag, Jung-Hoon;Lee, Jin-Eui;Kim, Ki-Hye;Eum, Hye-Yeong;Shin, Jong-Suh;Ra, Chang-Six
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.143-152
    • /
    • 2010
  • Conditions for artificial culture of Lemna Paucicostata and its nutritional values were examined in this study. Lemna P. was cultured using artificial wastewater and a bioreactor (total volume $2,630\;cm^3$, working volume $2,240\;cm^3$) was operated at conditions of 6,250 lux and $28^{\circ}C$. Water flow affected the growth of Lemna P.: growth rate was very high (more than $1.1\;d^{-1}$) at a condition of no-water movement, but it was very low (less than $0.15\;d^{-1}$) when water moved slowly. The growth of Lemna P. was higher in $16h\;d^{-1}$ light cycle than in Sand $24h\;d^{-1}$, and it was also severely affected by the initial $NH_4$-N levels of wastewater. The growth rate of Lemna P. was high in lower $NH_4$-N level, indicating that the growth rate is in inverse proportion to $NH_4$-N concentration in wastewater. However, the contents of crude protein (CP) of Lemna P. were proportional to the initial $NH_4$-N concentration. The CP contents of Lemna P. cultured at 2, 10, 50 and 100 $NH_4$-N mg $L^{-1}$ was 18, 24, 37, 43%, respectively, showing the Lemna P. cultured at 50 and $100\;mg\;L^{-1}$ had similar protein contents to linseed (CP 35%), cottonseed (CP 38%) and soybean (CP 45%). Fat, protein, fiber, NDF and ADF contents of Lemna P. harvested at conditions of $16h\;d^{-1}$ light cycle and less than $2\;mg\;L^{-1}$ of $NH_4$-N level was 2.8, 18, 27, 20, 41 and 65.7%, respectively. Since the growth rate of Lemna P. was very high (more than $1.1\;d^{-1}$) at those conditions, it was convinced that mass production of valuable protein and fiber sources are feasible. In particular, since the Lemna P. has unsaturated fatty acids found mainly in animal fat as well as beneficial fatty acids to health such as C18:ln9c, C18:2n6c, C20:5n3 and C22:2, the Lemna P. biomass would be a highly valuable alternative feed source to grains.

Affect of Pharmaceutical Byproduct and Cosmetic Industry Wastewater Sludge as Raw Materials of Compost on Damage of Red Pepper Cultivation (제약업종 부산물 및 화장품 제조업 폐수처리오니의 고추 비해에 미치는 영향)

  • Lim, Dong-Kyu;Lee, Sang-Beom;Kwon, Soon-Ik;Lee, Seung-Hwan;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • Three sludge types from pharmaceutical byproducts and one sludge type from cosmetic waste-water sludge as raw materials of compost were used in a field based concrete pot ($4\;m^2$, $2\;m{\times}2\;m$) for investigating damage of red pepper cultivation. These sludges and pig manure (1 Mg/10a, dry basis) were incorporated into the upper of clay loam soil prior to transplanting with red pepper. Changes in concentration and properties of heavy metal for both of soil and plant were investigated 4 times during of red pepper growth. Plant height and stem diameter of red pepper in sludge treatments except to Pharmaceutical sludge 3 were poor than those of NPK treatment. This result were regarded as an effect of incompleted decomposition sludge which has a lot of organic matter concentration. Amount of total As was increased rapidly Jul. 8. in soil, total Zn Cu Pb Cd were in harvest time, and 1 N-HCl extractable Zn Cu Pb Cd As were in harvest at middle stage and then decreased. Amounts of nitrogen in plant (leaf and stem) were high in Phamaceutical Sludge 1 and fig Manure treatment in early and middle stage because of organic matter and nitrogen concentrations and characteristics. Amounts of Zn, Pb, and Ni in leaf and amount of Zn and Pb in stem were increased in harvest time so that we need to have a concern in detail. Total yield of red pepper was Pig Manure > Phamaceutical Sludge 3 > Phamaceutical Sludge 1 > NPK > Phamaceutical Sludge 2 and Cosmetic Sludge treatment was decreased considerably to compare to others. Amounts of Zn and Cu in green and red pepper in harvest time were higher than the other heavy metals. Finally these results can use to utilize that finding damage on crop for authorization and suitability estimation of raw material of compost.

Estimation of Reliability of Real-time Control Parameters for Animal Wastewater Treatment Process and Establishment of an Index for Supplemental Carbon Source Addition (가축분뇨처리공정의 자동제어 인자 신뢰성 평가 및 적정 외부탄소원 공급량 지표 확립)

  • Pak, JaeIn;Ra, Jae In-
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.561-572
    • /
    • 2008
  • Responses of real-time control parameters, such as ORP, DO and pH, to the conditions of biological animal wastewater treatment process were examined to evaluate the stability of real-time control using each parameter. Also an optimum index for supplemental carbon source addition based on NOx-N level was determined under a consideration of denitrification rate by endogenous respiration of microorganism and residual organic matter in liquor. Experiment was performed with lab-scale sequencing batch reactor(SBR) and working volume of the process was 45L. The distinctive nitrogen break point(NBP) on ORP-and DO-time profiles, which mean the termination of nitrification, started disappearing with the maintenance of low NH4-N loading rate. Also the NBP on ORP-and DO-time profiles was no longer observed when high NOx-N was loaded into the reactor, and the sensitivity of ORP became dull with the increase of NOx-N level. However, the distinctive NBP was constantly occurred on pH(mV)-time profile, maintaining unique profile patterns. This stable occurrence of NBP on pH(mV)-time profile was lasted even at very high NOx-N:NH4-N ratio(over 80:1) in reactor, and the specific point could be easily detected by tracking moving slope change(MSC) of the curve. Revelation of NBP on pH(mV)-time profile and recognition of the realtime control point using MSC were stable at a condition of over 300mg/L NOx-N level in reactor. The occurrence of distinctive NBP was persistent on pH(mV)-time profile even at a level of 10,000mg/L STOC(soluble total organic carbon) and the recognition of NBP was feasible by tracing MSC, but that point on ORP and DO-time profiles began to disappear with the increase of STOC level in reactor. The denitrfication rate by endogenous respiration and residual organic matter was about 0.4mg/L.hr., and it was found that 0.83 would be accepted as an index for supplemental carbon source addition when 0.1 of safety factor was applied.