이변량 반복측정자료에서 Chinchilli 등(1996)이 제안한 가중일치상관계수는 두 변수의 일치성을 나타내는 측도이다. 기존에 제안된 가중일치상관계수 추정법은 변동효과 및 측정오차의 분산성분을 각각 최소제곱법으로 비편향 추정하여 구하는 것이다. 본 연구에서는 반복측정자료의 주변 우도함수를 설정한 후, 우도함수에 기초한 분산성분을 구하여 가중일치상관계수를 추정하는 방법을 제안한다. 이때, 각 분산성분은 유사/의사 우도함수 및 사후 분포에서 반복시행을 통하여 구해진다.
최근 요소망의 구성없이 공학적인 문제의 해석이 가능한 무요소법이 많은 학자들에 의하여 제안되고 이에 관한 집중적인 연구가 이루어지고 있다. 본 연구에서는 갤러킨 정식화에 의한 무요소법을 고체역학적인 문제에 적용하여 이의 특성을 규명하고자 하였다. 특히 일반적으로 사용되고 있는 몇가지 가중 함수를 선정하여 이들이 해석결과에 미치는 특성과 절점 배치방법 및 가중 함수의 영향 영역 변화에 따른 해의 정확도 등을 서로 비교하고 검토하였다. 연구결과로 가중 함수의 형태와 영향 영역의 크기, 기정 함수의 차수와 절점 배치방법 등은 서로 상관관계를 갖고 해의 정확도에 크게 영향을 미침을 확인할 수 있었고 이의 적절한 선정은 무요소해석의 중요한 요건임을 알 수 있었다.
특이 가중함수로 표현된 shepard interpolant와 일관조건을 사용하여 무요소법 형성함수를 도출하였다. 따라서 통상의 EFGM(Element Free Galerkin Method)과는 달리 변위로 주어지는 경계조건을 자연스럽게 부과할 수 있다. 수치계산 예로서 외팔보 문제를 다루었는데 보이론과 비교하여 매우 잘 맞는 결과를 보여주고, 유한요소법과의 결합도 자연스럽게 이루어짐을 보인다. 또 penny-shaped 균열을 다루는데, 응력확대계수는 균열 표면의 변위로부처 직접 계산하여 해석해와 비교한다.
파괴역학에서 가중함수는 응력확대계수를 계산하기 위하여 사용되어진다. 본 논문에서는 균열을 가진 횡등방성 압전재료에 대한 전기-기계적 분석을 행하여 평면변형률 상태의 압전문제를 Leknitskii 해석법으로 풀었고 가중함수이론을 압전재료에 확대 적용하였다. 가중함수이론을 이용하여 응력확대계수와 전기변위확대계수를 구하였다.
본 연구에서는 급수전개를 이용한 추계론적 유한요소해석법의 개선을 위한 등가몬테카를로 추계장함수를 제안하고 1차 Taylor전개를 이용한 추계론적 유한요소해석법인 가중적분법에 적용하였다. 일반적으로 1차 Taylor전개를 이용하는 수치해석법에서의 응답변화도는 고려하고 있는 추계장의 분산계수에 대하여 선형거동을 보인다. 그러나 몬테카를로 해석의 경우 추계장 분산계수에 대하여 비선형 거동을 나타낸다. 이는 급수전개법의 1차 Taylor전개에 따른 선형특성에 기인한다. 따라서, 가중적분법에서 사용되는 Taylor전개된 변위벡터와 몬테카를로 해석에서의 변위벡터를 비교하고 이들 두 변위벡터 사이에 상호 불일치 하는 점을 고찰하여 몬테카를로 해석에서의 변위벡터와 등가의 변위벡터를 구성하고 이를 가중적분법에 적용하였다. 제안한 등가몬테카를로 추계장은 본래의 추계장 함수에 대한 고차함수로 주어진다. 평면구조에 대한 수치해석을 통하여 제안한 등가몬테카를로 추계장을 이용한 정식화의 타당성을 고찰하였다 새로운 정식화는 기존의 l차 가중적분법을 위한 정식화 과정과 유사하게 수행할 수 있었다.
추계론적 해석은 구조계 내의 해석인수에 존재하는 공간적 또는 시간적 임의성이 구조계 반응에 미치는 영향에 대한 고찰을 목적으로 한다. 확률장은 구족계 내에서 특정한 확률분포를 가지는 것으로 가정된다. 구조계 반응에 대한 이들 확률장의 영향 평가를 위하여 통계학적 추계론적 해석과 비통계학적 추계론적 해석이 사용되고 있다. 본 연구에서는 비통계학적 추계론적 해석방법 중의 하나인 가중적분법을 제안하였다. 특히 구조계의 공간적 임의성이 큰 특성을 가지고 있는 반무한영역에 대한 적용 예를 제시하고자 한다. 반무한영역의 모델링에는 무한요소를 사용하였다. 제안된 방법에 의한 해석 결과는 통계학적 방법인 몬테카를로 방법에 의한 결과와 비교되었다. 제안된 가중적분법은 자기상관함수를 사용하여 확률장을 고려하므로 무한영역의 고려에 따른 해석의 모호성을 제거할 수 있다. 제안방법과 몬테카를로 방법에 의한 결과는 상호 잘 일치하였으며 공분산 및 표준편차는 무한요소의 적용에 의하여 매우 개선된 결과를 나타내었다.
최적화란 목적함수가 최대 또는 최소가 되도록 하는 결정변수를 찾아가는 절차이다. 기존의 많은 연구자들은 최적해의 효율적인 탐색과정에 집중한 반면 최적화의 시작점이라 할 수 있는 목적함수 구성을 위한 연구는 상대적으로 미진한 것이 사실이다. 따라서 본 연구에서는 국내외에서 빈번히 사용되고 있는 가중평균법을 사용하여 tradeoff를 고려한 목적함수와 절대우선순위를 위한 가중값을 적용한 목적함수를 구성하여 표본추계학적 동적계획법을 통해 산정한 최적운영률을 비교하였다. 그 결과 절대우선순위를 위한 가중값을 적용한 경우가 보다 실제 저수지운영과 부합하는 결과를 나타내는 것을 확인할 수 있었다. 따라서 국내 다목적댐 운영계획에 보다 적합한 목적함수를 구성하기 위해서는 절대우선순위를 위한 가중값을 부여하여 목적함수를 구성하는 것이 타당한 것으로 판단된다.
감쇠최소자승법은 각종 물리탐사 자료에 가장 널리 사용되는 역산법이다. 일반적으로 최소자승법에서 최소화되는 목적함수는 자료오차(data misfit)와 모델제한자의 합으로 주어진다. 따라서 역산에서 자료오차와 모델제한자는 함께 중요한 역할을 담당한다. 하지만 역산에 관한 대부분의 연구는 주로 모델제한자의 설정방법과 적절한 라그랑지 곱수의 선정방법에 치중되어 왔다. 일반적으로 자료획득시 자료가 갖는 표준편차를 자료가중값의 계산에 사용하는 것이 추천되고 있지만, 실제 현장조사에서는 자료의 표준편차는 좀처럼 측정되지 않으며, 대부분의 역산에서 자료가중행렬은 어쩔 수 없이 단위행렬로 간주된다. 본 논문에서는 자료분해능행렬과 그 분산함수를 분석하여 자동적으로 계산된 자료가중행렬을 사용하는 역산법을 개발하였다. EACB법이라 명명한 이 역산법에서는 분해능이 높은 자료에는 높은 가중값을, 작은 자료에는 작은 가중값을 부여한다. 개발된 EACB 역산법을 전기비저항 토모그피법에 적용한 결과, 보다 안정적이고 분해능이 향상된 결과를 얻을 수 있었다.
Modified Vainshtok weight function method is developed. The thermal shock stress intensity factors for elliptical surface cracks existed in the thin and thick walled cylinders are determined. The present results are compared with previous solutions and shown to be good agreement with them.
전기 임피던스 단층촬영에서는, 각기 다른 주입 전류패턴에 의해 유기된 경계면의 전압 값을 이용하여 다양한 복원 알고리즘에 의해 물체의 내부 저항률(전도율) 분포를 추정한다. 본 논문에서는, 부가적인 사전 정보를 soft 제약조건으로 비용함수에 추가하고, 비용함수의 가중행렬을 지수적으로 가중된 최소자승법에 근거하여 선택하는 수정된 조정 Newton-Raphson(mNR) 법을 제안한다. 32채널에 대한 컴퓨터 시뮬레이션 결과, 제안된 방법은 기존의 조정 mNR 법에 비해 계산부담은 약간 증가하지만 복원성능이 개선됨을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.