• Title/Summary/Keyword: 가중 평균 필터

Search Result 34, Processing Time 0.026 seconds

Color Image Processing using Fuzzy Cluster Filters and Weighted Vector $\alpha$-trimmed Mean Filter (퍼지 클러스터 필터와 가중화 된 벡터 $\alpha$-trimmed 평균 필터를 이용한 칼라 영상처리)

  • 엄경배;이준환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1731-1741
    • /
    • 1999
  • Color images are often corrupted by the noise due to noisy sensors or channel transmission errors. Some filters such as vector media and vector $\alpha$-trimmed mean filter have bee used for color noise removal. In this paper, We propose the fuzzy cluster filters based on the possibilistic c-means clustering, because the possibilistic c-means clustering can get robust memberships in noisy environments. Also, we propose weighted vector $\alpha$-trimmed mean filter to improve the conventional vector $\alpha$-trimmed mean filter. In this filter, the central data are more weighted than the outlying data. In this paper, we implemented the color noise generator to evaluate the performance of the proposed filters in the color noise environments. The NCD measure and visual measure by human observer are used for evaluation the performance of the proposed filters. In the experiment, proposed fuzzy cluster filters in the sense of NCD measure gave the best performance over conventional filters in the mixed noise. Simulation results showed that proposed weighted vector $\alpha$-trimmed mean filters better than the conventional vector $\alpha$-trimmed mean filter in any kinds of noise.

  • PDF

X-선 산란 잡음 제거 필터의 성능 비교

  • 이후민
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.28 no.1
    • /
    • pp.241-241
    • /
    • 2002
  • 영상 데이타는 전송, 검출 및 처리과정에서 여러 잡음에 의해 훼손될 수 있다. 적응성 가중 메디안 필터라는 공간변화 필터를 사용하여 X-선 산란 잡음을 제거하였다. 제안된 필터는 처리 윈도우 내 각 픽셀의 국소 통계치의 변화에 따라 필터의 성능이 변화하여 에너지를 최대한 보존하면서 잡음만을 제거하고자 이러한 국소 통계값에 근거한 적응성 가중 메디안 필터(AWMF)를 제시한다. AWMF를 구현함에 있어 두 가지 방법으로 나뉘는데, 우선 국소 통계의 특성에

  • PDF

An Iterative Weighted Mean Filter for Mixed Noise Reduction (복합 잡음 저감을 위한 반복 가중 평균 필터)

  • Lee, Jung-Moon
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.175-182
    • /
    • 2017
  • Noises are usually generated by various external causes and low quality devices in image data acquisition and recording as well as by channel interference in image transmission. Since these noise signals result in the loss of information, subsequent image processing is subject to the corruption of the original image. In general, image processing is performed in the mixed noise environment where common types of noise, known to be Gaussian and impulse, are present. This study proposes an iterative weighted mean filter for reducing mixed type of noise. Impulse noise pixels are first turned off in the input image, then $3{\times}3$ sliding window regions are processed by replacing center pixel with the result of weighted mean mask operation. This filtering processes are iterated until all the impulse noise pixels are replaced. Applied to images corrupted by Gaussian noise with ${\sigma}=10$ and different levels of impulse noise, the proposed filtering method improved the PSNR by up to 12.98 dB, 1.97 dB, 1.97 dB respectively, compared to SAWF, AWMF, MMF when impulse noise desities are less than 60%.

The Motion Artifact Reduction from the PPG based on EWMA (지수가중 이동평균 기반의 PPG 신호 동잡음 제거)

  • Lee, Jun-Yeon
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.183-190
    • /
    • 2013
  • The Photoplethysmogram is a similar periodic signal that synchrinized to a heartbeat. In this paper, we propose a exponential weight moving average filter that use similarity of Photoplethysmogram. This filtering method has the average value of each samples through separating the cycle of PPG signal. If there are some motion artifacts in continuous PPG signal, disjoin the signal based on cycle. And then, we made these signals to have same cycle by coordinating the number of sample. After arrange these cycles in 2 dimension, we put the average value of each samples from starting till now. So, we can eliminate the motion artifacts without damaged PPG signal.

Adaptive Weighted Mean Filter to Remove Impulse Noise in Images (영상에서 임펄스 잡음제거를 위한 적응력 있는 가중 평균 필터)

  • Lee, Jun-Hee;Choi, Eo-Bin;Lee, Won-Yeol;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.233-245
    • /
    • 2008
  • In this work, a new adaptive weighted mean filter is proposed for preserving image details while effectively suppressing impulse noise. The proposed filter is based on a noise pixel detection-estimation strategy. All the pixels are first detected using an impulse noise detector. Then the detected noise pixels are replaced with the output of the weighted mean filter over adaptive working window according to the rate of corrupted neighborhood pixels, while noise-free pixels are left unaltered. We compare the proposed filter to other existing filters in the qualitative measure and quantitative measures such as PSNR and MAE as well as computation time to verify the capability of the proposed filter. Extensive simulations show that the proposed filter performs better than other filters in impulse noise suppression and detail preservation without increasing of running time.

A Study on the Improvement of PWF Performance Using the LSP (LSP를 이용한 인지가중필터의 성능개선에 관한 연구)

  • JUNG HyunUk;KIM IkSung;BAE MyungJin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.191-194
    • /
    • 2002
  • 최근 음성 부호화기의 연구방향은 저전송률, 저복잡도와 더불어 가변전송률 음성부호화기에 대한 연구로 진행되고 있다. 지금까지 제안된 저전송률 음성부호화기로는 스펙트럼 모델링을 이용한 MBE 계열과 혼성부호화 방식의 CELP 계열이 있다. 그 중에서 가장 많은 연구가 이루어지고 있는 방식이 CELP 방식이다. 이 방식은 4.8kbps 내외의 전송율에서 양호한 음질을 얻을 수 있다. 본 논문에서는 평균자승오차값을 최소화하여 계산량을 줄이고 음질을 향상시킬 수 있는 새로운 알고리즘을 제안한다. 먼저 G.723.1 부호화기에서 인지가중필터를 거친 신호를 LSP를 이용하여 각 포만트의 위치를 검출하여 Pole점만 비교하여 Zero점의 영향을 최소화 하였고 평균자승오차값을 최소화 하여 문턱값에 가장 가까운 값을 대표 피치이득계수로 정하고 그때의 피치와 함께 부호화한다.

  • PDF

Reduction of Speckle Noise in Images Using Homomorphic Wavelet-Based MMSE Filter with Edge Detection (에지 영역을 고려한 호모모르픽 웨이브렛 기반 MMSE 필터를 이용한 영상 신호의 스펙클 잡음 제거)

  • 박원용;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1098-1110
    • /
    • 2003
  • In this paper, we propose a homomorphic wavelet-based MMSE filter with edge detection to restore images degraded by speckle noise. In the proposed method, a noisy image is first transformed into logarithmic domain. Each pixel in the transformed image is then classified into flat and edge regions by applying DIP operator to the image restored by homomorphic directional MMSE filter. Each pixel in flat region is restored by homomorphic wavelet-based MMSE filter. Each pixel in edge region is restored by the weighted sum of the output of homomorphic wavelet-based MMSE filtering and that of homomorphic directional MMSE filtering. The restored image in spatial domain is finally obtained by applying the exponential function to the restored image in logarithmic domain. Experimental results show that the restored images by the proposed method have ISNR improvement of 3.3-4.0 ㏈ and ${\beta}$, a measurement parameter on edge preservation, improvement of 0.0103-0.0126 and superior subjective image quality over those by conventional methods.

A Study of Digital filter for context-awareness using multi-sensor built in the smart-clothes (멀티센서 기반 스마트의류에서 상황인지를 위한 디지털필터연구)

  • Jeon, Byeong-chan;Park, Hyun-moon;Park, Won-Ki;Lee, Sung-chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.911-913
    • /
    • 2013
  • The user's context awareness is important to the reliability of sensors data. The sensor data is constantly change to external temp, internal& external environment and vibration. This noise environment is affecting that the data collected information from sensors. Of course this method of digital filter and inference algorithm specifically request for the use of ripple noise and action inference. In this paper, experiment was a comparison of the KF(Kalman Filter) and WMAF(Weight Moving Average Filter) for noise decrease and distortion prevention according to user behavior. And, we compared the EWDF(Extended Weight Dual Filter) with several filer. In an experiment, in contrast to other filter, the proposed filter is robust in a noise-environment.

  • PDF

Effects of filtering techniques for smoothing reservoir inflow data (저수지 유입량 자료 평활화를 위한 필터링 기법 적용 효과)

  • Youngje Choi;Jaehwang Lee;Moon Hyung Park
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.424-424
    • /
    • 2023
  • 댐, 저수지 등 수자원 시스템분석 시 가장 기초가 되는 유입량 자료는 실측 수위(저수량)와 방류량을 역산하여 산정된다. 이 중 댐 수위는 수표면 진동으로 인해 변동이 크며, 특히, 급격한 수위 변화가 발생하는 홍수기에는 수위-저수량 변환 시 큰 오차가 발생하여 유입량 진동이 더욱 커지게 된다. 하지만 홍수기 저수지 운영 효과 분석 등 관련 연구를 위해서는 시간 간격이 짧은 10분 또는 1시간 단위의 유입량 자료가 필요함에 따라 관련 연구 수행 시 이동평균법(Moving Average) 등을 통해 실측 유입량 자료를 보정하여 사용하는 것이 일반적이다. 데이터 평활화를 위해 이동평균법을 적용하면 데이터의 변동을 효과적으로 줄일 수는 있지만 실측자료와 비교하였을 때 첨두 유입량이 큰 폭으로 감소하거나, 첨두 유입량 발생시간이 지체되는 문제가 발생한다. 본 연구에서는 저수지 유입량과 같이 변동이 큰 수문자료의 평활화를 위해 가우시안 가중 이동평균법(Gaussian-weighted moving average technique), 사비츠키-골레이 필터링기법(Savitzky-Golay filtering technique) 등 필터링 기법을 댐 유입량 보정에 적용하고, 이에 따른 효과를 분석하고자 하였다. 이를 위해 2020년 8월에 발생한 홍수사상을 대상으로 충주댐, 합천댐 등 다목적댐 유입량 자료를 수집하고, 보정을 수행하였다. 필터링 기법의 적용 효과 분석을 위해서는 실측자료와 이동평균법을 적용하여 보정한 결과와 비교하였고, 추가적으로 비교적 변동이 작은 일 단위 유입량 자료와의 양적 비교를 진행하였다. 그 결과 이동평균법을 적용하였을 때보다 필터링 기법을 적용하였을 때 실측자료와의 양적 차이가 작고, 첨두 유입량 및 첨두 유입 발생시간에서도 차이를 큰 폭으로 감소시킬 수 있는 것으로 확인되었다.

  • PDF

Object Tracking Using Weighted Average Maximum Likelihood Neural Network (최대우도 가중평균 신경망을 이용한 객체 위치 추적)

  • Sun-Bae Park;Do-Sik Yoo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • Object tracking is being studied with various techniques such as Kalman filter and Luenberger tracker. Even in situations, such as the one in which the system model is not well specified, to which existing signal processing techniques are not successfully applicable, it is possible to design artificial neural networks to track objects. In this paper, we propose an artificial neural network, which we call 'maximum-likelihood weighted-average neural network', to continuously track unpredictably moving objects. This neural network does not directly estimate the locations of an object but obtains location estimates by making weighted average combining various results of maximum likelihood tracking with different data lengths. We compare the performance of the proposed system with those of Kalman filter and maximum likelihood object trackers and show that the proposed scheme exhibits excellent performance well adapting the change of object moving characteristics.