Kim, Sa-Mun;Lee, Dea-Jong;Song, Chang-Kyu;Chun, Myung-Geun
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.4
/
pp.343-348
/
2014
Face recognition system has advanctage to automatically recognize a person without causing repulsion at deteciton process. However, the face recognition system has a drawback to show lower perfomance according to illumination variation unlike the other biometric systems using fingerprint and iris. Therefore, this paper proposed a robust face recogntion method against illumination varition by slective fusion technique using both visible and infrared faces based on fuzzy linear disciment analysis(fuzzy-LDA). In the first step, both the visible image and infrared image are divided into four bands using wavelet transform. In the second step, Euclidean distance is calculated at each subband. In the third step, recognition rate is determined at each subband using the Euclidean distance calculated in the second step. And then, weights are determined by considering the recognition rate of each band. Finally, a fusion face recognition is performed and robust recognition results are obtained.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.4
/
pp.875-885
/
2010
CBR (Case-Based Reasoning) is a technique to infer the relationships between existing data and case data, and the method to calculate similarity and Euclidean distance is mostly frequently being used. However, since those methods compare all the existing and case data, it also has a demerit that it takes much time for data search and filtering. Therefore, to solve this problem, various researches have been conducted. This paper suggests the method of SE(Speed Euclidean-distance) calculation that utilizes the patterns discovered in the existing process of computing similarity and Euclidean distance. Because SE calculation applies the patterns and weight found during inputting new cases and enables fast data extraction and short operation time, it can enhance computing speed for temporal or spatial restrictions and eliminate unnecessary computing operation. Through this experiment, it has been found that the proposed method improves performance in various computer environments or processing rate more efficiently than the existing method that extracts data using similarity or Euclidean method does.
This paper discusses a new unsupervised XML document clustering technique based on the function transform and FFT(Fast Fourier Transform). An XML document is transformed into a discrete function based on the hierarchical nesting structure of the elements. The discrete function is, then, transformed into vectors using FFT. The vectors of two documents are compared using a weighted Euclidean distance metric. If the comparison is lower than the pre specified threshold, the two documents are considered similar in the structure and are grouped into the same cluster. XML clustering can be useful for the storage and searching of XML documents. The experiments were conducted with 800 synthetic documents and also with 520 real documents. The experiments showed that the function transform and FFT are effective for the incremental and unsupervised clustering of XML documents similar in structure.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2005.11a
/
pp.205-208
/
2005
본 논문은 특징 가중치 벡터를 적용하여 능동형태 모델(Active Shape Model)기반에서 눈동자의 움직임 추적 속도를 향상시키는 방법을 제안한다. 일반적인 능동형태 모델에서는 객체 추적을 위한 PDM 구성을 위해 각 특징점 구성 벡터의 유클리디안 거리의 최소 값으로 Training Set정렬 과정을 수행한다. 이 과정에서 적절하지 못한 샘플 영상으로 인해 안정된 PDM을 구성하지 못하는 문제점이 발생한다. 이러한 문제점을 해결하기 위하여 본 논문에 서는 형태를 구성하는 특징점마다 가중치를 부여하는 벡터를 작성하고, 최소자승근사법으로 최유사 특징점 벡터를 산출하기 위한 선형방정식을 구상하였다. 이로 인해 안정된 PDM을 구성할 수 있었으며, 눈동자 추적실험을 통해 형태적 움직임을 보정하는 실험을 수행하였다. 실험결과 기존의 능동형태 모델에 비해 반복연산의 횟수가 줄어들고, 다양한 형태로 나타나는 눈동자의 움직임 추적에 보다 안정적인 결과를 얻을 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.265-267
/
2002
본 논문에서는 적응적 정규화 자연기울기 학습법과 자연 프루닝(pruning) 방법의 결합을 통하여 일반화 성능이 우수만 신경망을 구성하고자 한다. 먼저 적응적 정규화 자연기울기 학습을 통하여 신경망의 가중치를 최적화 시키고, 자연 프루닝에 의하여 신경망의 구조를 단순화 시킨다. 이러한 모델들 중 최적의 모델은 베이시안 정보 기준에 의해 선택함으로써 일반화 성능이 우수만 신경망을 구성하는 방법을 제안한다 벤치마크 (benchmark) 데이터로 제안하는 방법과 유클리디안(Euclidean) 거리에 기반한 결합 방법과 자연 프루닝만을 적용한 방법을 비교함으로써 우수성을 검증한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.10a
/
pp.300-301
/
2016
This paper proposes customized recommendation algorithm to improve the QoS(quality of service) of sport for all sports content uses to user profile and team grade. The proposed recommendation module is based on user profile information, and it recommends suitable team contents to user with Euclidean distance algorithm and preference weights between teams.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.6
/
pp.622-627
/
2014
This paper proposes a new method which improves recognition rate on the gait recognition system using wavelet transform, linear discriminant analysis and genetic algorithm. We use wavelet transform to obtain the four sub-bands from the gait energy image. In order to extract feature data from sub-bands, we use linear discriminant analysis. Distance values between training data and four sub-band data are calculated and four weights which are calculated by genetic algorithm is assigned at each sub-band distance. Based on a new fusion distance value, we conducted recognition experiments using k-nearest neighbors algorithm. Experimental results show that the proposed weight fusion method has higher recognition rate than conventional method.
Journal of Information Technology and Architecture
/
v.9
no.1
/
pp.57-66
/
2012
Recently, with a rapidly growing of the mobile content market, a variety of mobile-based applications are being launched. But mobile devices, compared to the average computer, take a lot of effort and time to get the final contents you want to use due to the restrictions such as screen size and input methods. To solve this inconvenience, a recommender system is required, which provides customized information that users prefer by filtering and forecasting the information.In this study, an tailored multi-information recommendation system utilizing a Personalized information recommendation system on smartphone is proposed. Filtering of information is to predict and recommend the information the individual would prefer to by using the user-based collaborative filtering. At this time, the degree of similarity used for the user-based collaborative filtering process is Euclidean distance method using the Pearson's correlation coefficient as weight value.As a real applying case to evaluate the performance of the recommender system, the scenarios showing the usefulness of recommendation service for the actual restaurant is shown. Through the comparison experiment the augmented reality based multi-recommendation services to the existing single recommendation service, the usefulness of the recommendation services in this study is verified.
Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.