• Title/Summary/Keyword: 가중치 유사도

Search Result 581, Processing Time 0.029 seconds

Optimizing the Weight of Added Terms in Query Expansion (질의확장 검색에서의 추가용어 가중치 최적화)

  • 정영미;이재윤
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2002.08a
    • /
    • pp.241-246
    • /
    • 2002
  • 전역적 질의확장 검색에서 단어간 공기기반 유사도를 사용할 경우에는 질의에 추가되는 용어에 부여하는 탐색가중치로 질의와의 유사도를 사용하는 것이 일반적이다. 그러나 과연 유사도가 탐색가중치로 최적인가는 의문의 여지가 있다. 추가용어와 질의 사이의 유사도가 가지는 특성을 살펴보고 고정가중치를 부여한 경우와 비교해보았다. 또한 실험집단이나 확장범위의 영향을 덜 받는 최적화된 추가용어 가중치를 찾기 위해 여러 가지 탐색가중치 공식을 실험하였다.

  • PDF

A Study on Prediction Model of Subjective Well-Being Using Collaborative Filtering (협력적 필터링을 이용한 주관적 행복감 예측 모형연구)

  • Lee Sangyeop;Kim Jiyeon;Ryu dong in;Gi Hyeon Han;Park Saehan;Koo Jee Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.552-553
    • /
    • 2024
  • 협력적 필터링은 추천시스템을 구축하는 알고리즘으로 고객별 선호도를 예측하는데 사용되고 있다. 이에 본 연구는 행복감에 영향을 주는 요인인 자존감과 생활여건을 사용하여, 협력적 필터링을 기반으로 한 예측정확도가 높은 모형을 연구하고자 한다. 이를 위해, 자존감과 생활여건에 대한 응답자 간의 유사도 가중치를 각각 계산한 후, 자존감 유사도 가중치를 적용한 모형으로 행복감을 예측하고, 자존감 유사도 가중치에 생활여건 유사도 가중치를 부여한 유사도 가중치를 적용한 모형으로 행복감을 예측하였다. 그 결과 전자의 모형이 후자의 모형보다 예측정확도가 높게 나타났다.

Applying the Weight for Query Length and the Frequency of Query Term to Information Retrieval (정보 검색에서 질의문 길이에 대한 가중치와 질의어 출현 빈도 가중치 적용)

  • Kang, Seung-Shik;Chun, Young-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.763-766
    • /
    • 2005
  • 정보검색 시스템에서 긴 문장으로 질의가 들어올 경우 질의문의 길이와 시스템이 정답이라고 판단한 문서에서 질의문을 분석하여 추출한 질의어들이 출현한 빈도수를 가중치로 준다면 좀더 정확한 결과를 보일 수 있을 것이라 가정하였다. 즉 벡터 모델을 이용하여 문서와 질의와의 유사도를 계산하고 여기에 질의문의 길이에 대한 가중치와 유사도를 이용하여 얻은 결과 문서에서 질의문을 분석하여 얻은 질의 용어들의 출현 빈도에 대한 가중치를 적용하는 방법을 제안하였다.

  • PDF

A Study on the Relationship between Weighted Value and Qualitative Standard in Substantial Similarity (실질적 유사성 판단을 위한 가중치 활용과 질적 분석의 관계)

  • Kim, Si-Yeol
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.25-35
    • /
    • 2019
  • In Korea, the calculation of quantitative similarity is commonly used to gauge the substantial similarity of computer programs. Substantial similarity should be assessed by considering the quantity and quality of areas that show similarity, but in practice, qualitative aspects are reflected by multiplying the weighted value in the calculation of quantitative similarity. However, such a practical method cannot be deemed adequate, considering the fundamental characteristic of the judgment on substantial similarity, which holds that the quantitative and qualitative aspects of similar areas should be considered on an equal footing. Thus, this study pointed out the issue regarding the use of weighted value and sought appropriate ways to take into account qualitative aspects when assessing the substantial similarity of computer programs.

Query Term Expansion and Reweighting using Term Co-Occurrence Similarity and Fuzzy Inference (용어 발생 유사도와 퍼지 추론을 이용한 질의 용어 확장 및 가중치 재산정)

  • Kim, Ju-Yeon;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.9
    • /
    • pp.961-972
    • /
    • 2000
  • 본 논문에서는 사용자의 적합 피드백을 기반으로 적합 문서들에서 발생하는 용어들과 초기 질의어간의 발생 빈도 유사도 및 퍼지 추론을 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의어로 확장될 수 있는 후보 용어들로 선택하고, 발생 빈도 유사성을 이용한 초기 질의어-후보 용어의 관련 정도, 용어의 IDF, DF 정보를 퍼지 추론에 적용하여 후보 용어의 초기 질의어에 대한 최종적인 관련 정도를 산정 하였으며, 피드백 문서들에서의 가중치와 관련 정도를 결합하여 후보 용어들의 가중치를 산정 하였다. 본 논문에서는 성능을 평가하기 위하여 KT-set 1.0과 KT-set 2.0을 사용하였으며, 성능의 상대적인 평가를 위하여 Dec-Hi 방법, 용어 분포 유사도를 이용한 방법, 퍼지 추론을 이용한 방법들을 정확률-재현률을 사용하여 평가하였다.

  • PDF

A coordination Agent Model based on Extracting Similar Information (유사 정보 추출에 기반한 조정 에이전트 모델)

  • 양소진
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.398-413
    • /
    • 2000
  • 본 논문의 목적은 유사도와 강화 학습을 사용하여, 정보를 제공하는 에이전트와 정보를 요청하는 에이전트간의 연결을 매개하는 조정 에이전트(Coordination Agent, Middle Agent) 구현 방식을 제안하는데 있다.본 논문에서는 질의 에이전트의 질의와 가장 밀접한 정보를 제공하는 것으로 판단되는 정보 에이전트를 찾는 방안을 제안하고자 한다. 정보 에이저트와 질의 에이전트는 조정에이전트에 정보를 등록·요청할 때, 조정 에이전트에 이미 존재하는 기본 오톨로지(Base Ontology)에 자신이 제공·질의하는 정보의 상대적 가중치를 함께 등록한다. 조정 에이전트는 질의 에이전트와 정보 에이전트의 가중치를 고려하여 유사도를 구하고, 구해진 유사도를 이용하여 가장 근접한 정보를 제공하는 정보 에이전트를 찾아 연결한다. 가중치를 제공하지 않는 질의 에이전트의 경우에는 강화 학습으로 얻어진 특성 자료를 이용하여 조정 에이전튼가 임의로 가중치를 구하고, 얻어진 결과에 대하여 타당성을 검증한다.

  • PDF

Query Term Expansion and Reweighting by Fuzzy Infernce (퍼지 추론을 이용한 질의 용어 확장 및 가중치 재산정)

  • 김주연;김병만;신윤식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.336-338
    • /
    • 2000
  • 본 논문에서는 사용자의 적합 피드백을 기반으로 적합 문서들에서 발생하는 용어들과 초기 질의어간의 발생 빈도 유사도 및 퍼지 추론을 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의로 확장될 수 있는 후보 용어들로 선택하고, 발생 빈도 유사성을 이용한 초기 질의어-후보 용어의 관련 정도, 용어의 IDF, DF 정보를 퍼지 추론에 적용하여 후보 용어의 초기 질의에 대한 최종적인 관련 정도를 산정 하였으며, 피드백 문서들에서의 가중치와 관련 정보를 결합하여 후보 용어들의 가중치를 산정 하였다.

  • PDF

Analysis Method for Revision and Addition of the Specification to Appraisal (감정 대상 규격서의 수정 및 추가에 대한 분석 방법)

  • Chun, Byung-Tae
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • As the information society develops, various cases of copyright infringement have occurred. In many disputes between companies, software similarity appraisal is dominated. This thesis is a study on the method of calculating the similarity of the standards subject to appraisal. In other words, it is a study to calculate the amount of revision and addition of the specification to be assessed. The analysis method compares the table of contents of both specifications and finds the same or similar part. The similarity weight is determined according to the degree of similarity. Weights identify and assign the degree of similarity between the expert's expertise and the specification. If it is completely newly added, the similarity weight is 1, if it is partially modified, the similarity weight is 0.4, and if it is almost the same as before, it is calculated by giving a weight of 0.05. Through this paper, it was found that the result of calculating the similarity to the specification is 21.2 pages.

A relevance-based pairwise chromagram similarity for improving cover song retrieval accuracy (커버곡 검색 정확도 향상을 위한 적합도 기반 크로마그램 쌍별 유사도)

  • Jin Soo Seo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.200-206
    • /
    • 2024
  • Computing music similarity is an indispensable component in developing music search service. This paper proposes a relevance weight of each chromagram vector for cover song identification in computing a music similarity function in order to boost identification accuracy. We derive a music similarity function using the relevance weight based on the probabilistic relevance model, where higher relevance weights are assigned to less frequently-occurring discriminant chromagram vectors while lower weights to more frequently-occurring ones. Experimental results performed on two cover music datasets show that the proposed music similarity improves the cover song identification performance.

A study on the Prediction Performance of the Correspondence Mean Algorithm in Collaborative Filtering Recommendation (협업 필터링 추천에서 대응평균 알고리즘의 예측 성능에 관한 연구)

  • Lee, Seok-Jun;Lee, Hee-Choon
    • Information Systems Review
    • /
    • v.9 no.1
    • /
    • pp.85-103
    • /
    • 2007
  • The purpose of this study is to evaluate the performance of collaborative filtering recommender algorithms for better prediction accuracy of the customer's preference. The accuracy of customer's preference prediction is compared through the MAE of neighborhood based collaborative filtering algorithm and correspondence mean algorithm. It is analyzed by using MovieLens 1 Million dataset in order to experiment with the prediction accuracy of the algorithms. For similarity, weight used in both algorithms, commonly, Pearson's correlation coefficient and vector similarity which are used generally were utilized, and as a result of analysis, we show that the accuracy of the customer's preference prediction of correspondence mean algorithm is superior. Pearson's correlation coefficient and vector similarity used in two algorithms are calculated using the preference rating of two customers' co-rated movies, and it shows that similarity weight is overestimated, where the number of co-rated movies is small. Therefore, it is intended to increase the accuracy of customer's preference prediction through expanding the number of the existing co-rated movies.