• Title/Summary/Keyword: 가중치 기법

Search Result 1,644, Processing Time 0.031 seconds

An Autonomic User-Dependent Weighting Method to Improve Efficiency of Recommendation (추천 성능 향상을 위한 사용자별 가중치 자동 설정 기법)

  • Lee, Seong-Jin;Lee, Youn-Jeong;Lee, Soo-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.781-783
    • /
    • 2005
  • 추천 기술이란 과도하게 제공되는 정보를 여과하여 사용자에게 필요한 정보만을 제공해 주는 것으로 대표적으로는 협력적 여과가 있다. 그러나 협력적 여과는 희소성 문제와 확장성에 취약점을 보이고 있어 최근 이를 극복하기 위한 내용 기반 추천 기법에 관한 연구가 활발히 이루어지고 있다. 내용 기반의 추천 기법에서 효율적인 추천이 이루어지기 위해서는 각 요소별 가중치를 어떻게 설정할 것인가가 매우 중요하다. 기존의 연구에서는 요소별 가중치를 다양한 실험에 의해 결정하고 이를 모든 사용자에게 동일하게 적용하는 방식을 취하고 있다. 그러나 사용자마다 콘텐츠 선택 기준과 요인이 다를 수 밖에 없으므로 이러한 방식은 사용자의 선호 정보를 효과적으로 반영할 수 없다. 따라서 본 논문에서는 사용자의 선호 정보 분석과 함께 각 요소별 가중치를 사용자별로 자동으로 설정하여 보다 효과적인 추천이 이루어질 수 있는 기법을 제안한다.

  • PDF

Coordinated Multiple Reservoir Operation Using a DEA-based Ranking Procedure (DEA기반 순위결정 절차를 활용한 저수지군 연계운영)

  • Jeon, Seung-Mok;Kim, Sheung-Kown
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2089-2093
    • /
    • 2007
  • 저수지군 연계운영 문제는 서로 상충되는 목적들이 존재하고, 다양한 평가 기준들이 존재하는 다목적 특성을 갖는 문제이다. 때문에 저수지군 연계운영 문제에 다중목적계획법이 많이 사용되고 있으나 문제의 해결을 위해 사용한 다수의 목적간의 가중치 설정에 의사결정자의 주관적요소가 반영 될 수도 있고, 설정된 가중치에 따라 결과 값이 민감하게 반응하여 의사결정자가 바람직한 가중치 설정에 어려움이 있다. 본 연구의 목적은 다중 목적 특성이 존재하는 저수지군 연계운영 문제에 다요소 의사결정기법 적용하여 바람직한 저수지별 저수 가중치를 선정하는 방법을 제안하는 것이다. 제안하는 저수 가중치 선정 절차는, 우선 GA-CoMOM (Genetic-Algorithm Coordinate Multi-reservoir Operation Model)을 통해 수계 전체 관점에서 저수량과 발전량의 상충되는 목적에 대한 파레토 최적해와 각 최적해에 해당하는 저수지별 저수 가중치를 도출한다. 다음 단계로 다요소 의사결정기법중에 하나인 수정된 거리척도 기반의 DEA 순위 선정 절차를 이용하여 도출된 최적해들의 운영 결과를 평가하여 파레토 최적해군 중에 선호해를 결정하고, 결정된 선호해의 저수지별 저수 가중치를 해당 기간의 저수 가중치로 선정한다. 설명한 선호 가중치 선정 절차를 금강 수계에 적용해 보고 저수지 연계운영에서 바람직한 가중치를 도출할 수 있음을 보인다.

  • PDF

A Feature Re-weighting Approach for the Non-Metric Feature Space (가변적인 길이의 특성 정보를 지원하는 특성 가중치 조정 기법)

  • Lee Robert-Samuel;Kim Sang-Hee;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.372-383
    • /
    • 2006
  • Among the approaches to image database management, content-based image retrieval (CBIR) is viewed as having the best support for effective searching and browsing of large digital image libraries. Typical CBIR systems allow a user to provide a query image, from which low-level features are extracted and used to find 'similar' images in a database. However, there exists the semantic gap between human visual perception and low-level representations. An effective methodology for overcoming this semantic gap involves relevance feedback to perform feature re-weighting. Current approaches to feature re-weighting require the number of components for a feature representation to be the same for every image in consideration. Following this assumption, they map each component to an axis in the n-dimensional space, which we call the metric space; likewise the feature representation is stored in a fixed-length vector. However, with the emergence of features that do not have a fixed number of components in their representation, existing feature re-weighting approaches are invalidated. In this paper we propose a feature re-weighting technique that supports features regardless of whether or not they can be mapped into a metric space. Our approach analyses the feature distances calculated between the query image and the images in the database. Two-sided confidence intervals are used with the distances to obtain the information for feature re-weighting. There is no restriction on how the distances are calculated for each feature. This provides freedom for how feature representations are structured, i.e. there is no requirement for features to be represented in fixed-length vectors or metric space. Our experimental results show the effectiveness of our approach and in a comparison with other work, we can see how it outperforms previous work.

Supervised Feature Weight Optimization for Data Mining (데이터마이닝에서 교사학습에 의한 속성 가중치 최적화)

  • 강명구;차진호;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.244-246
    • /
    • 2001
  • 최근 군집화와 분류기법이 데이터 마이닝에 중요한 도구로 많은 응용분야에 사용되고 있다. 따라서 이러한 기법을 이용하는데 있어서 각각의 속성의 중요도가 달라 중요하지 않은 속성에 의해 중요한 속성이 왜곡되거나 때로는 마이닝의 결과가 잘못되는 결과를 얻을 수 있으며, 또한 전체 데이터를 사용할 경우 마이닝 과정을 저하시키는 문제로 속성 가중치과 속성선택에 과한 연구가 중요한 연구의 대상이 되고 있다. 최근 연구되고 있는 알고리즘들은 사용자의 의도와는 상관없이 데이터간의 관계에만 의존하여 가중치를 설정하므로 사용자가 마이닝 결과를 쉽게 이해하고 분석할 수 없는 문제점을 안고 있다. 본 논문에서는 클래스 정보가 있는 데이터뿐 아니라 클래스 정보가 없는 데이터를 분석할 경우 사용자의 의도에 따라 학습할 수 있도록 각 가중치를 부여하는 속성가중치 알고리즘을 제안한다. 또한 사용자가 의도한 정보를 이용하여 속성간의 가장 최적화 된 가중치를 찾아주며, Cramer's $V^2$함수를 적합도 함수로 하는 유전자 알고리즘을 사용한다. 알고리즘의 타당성을 검증하기 위해 전자상거래상의 실험 데이터와 몇 가지 벤치마크 데이터를 이용하여 본 논문의 타당성을 보인다.

  • PDF

Korean Dependency Parsing Based on Learning Weights of Features (자질 가중치 학습을 이용한 한국어 의존파싱)

  • Kim, Young-Tae;Ra, Dong-Yul;Lim, SooJong
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.63-67
    • /
    • 2010
  • 본 논문에서는 자질(feature)의 가중치를 학습하여 이용하는 기계학습 기반 한국어 의존 파싱 기법을 소개한다. 이를 위하여 모든 가능한 의존관계에 대하여 각 의존관계마다 일정한 수의 자질을 생성한다. 자질마다 가중치에 의하여 그 중요도를 나타낸다. 자질의 가중치 값은 의존관계가 태깅된 구문구조 학습 말뭉치를 이용하여 학습한다. 이를 위해 본 논문에서는 간단한 가중치 기계학습 기법을 제시한다. 실험을 위한 언어 자원으로는 구구조부착 세종말뭉치를 변환하여 구한 의존관계 부착 말뭉치를 사용하였다. 실험 결과 약 86.5%의 정확률을 가지는 의존파싱이 가능함을 관찰하였다.

  • PDF

Determination of Weight of Landslide Related Factors using GIS and Artificial Neural Network in the Kangneung Area (원격탐사, 지리정보시스템(GIS) 및 인공신경망을 이용한 강릉지역 산사태 발생 요인의 가중치 분석)

  • 이명진;이사로;원중선
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.487-492
    • /
    • 2004
  • 본 연구에서는 인공신경망 기법을 이용하여 산사태 발생원인에 대한 가중치를 구하였다. 여름철 집중호우시 산사태가 많이 발생하는 강원도 강릉시 사천면 사기막리 와 주문진읍 삼교리에 해당한다. 산사태가 발생할 수 있는 요인으로 지형도로부터 경사, 경사방향, 곡률, 수계추출을, 정밀토양도로부터 토질, 모재, 배수, 유효토심, 지형을, 임상도로부터 임상, 경급, 영급, 밀도를, 지질도로부터 암상을, Landsat TM 영상으로부터 토지이용도와 추출하여 격자화 하였으며, 아리랑1호 영상으로부터 선구조를 추출하여 l00m 간격으로 버퍼링 한 후 격자화 하였다. 이렇게 구축된 산사태 발생 위치 및 발생요인 데이터 베이스를 이용하여 인공신경망 기법을 적용하여 산사태 발생 원인에 대한 상대적인 가중치를 구하였다. 인공신경망의 역전파 알고리즘을 이용한 사기막리 지역과 삼교리 지역의 산사태 가중치를 보면 GPS를 이용한 현장조사와 위성영상을 이용한 변화탐지 기법모두의 경우모두와 훈련지역을 실제 산사태 발생 지역과 경사도가 0°인 지역, 실제 산사태 발생 지역과 Frequence ratio를 이용하여 작성한 취약성도에서 산사태 발생이 낮을 것으로 예상되는 지역, Frequence ratio를 이용한 취약성도에서 산사태 발생이 높을 것으로 예상되는 지역 과 낮을 것으로 예상되는 지역의 경우에서도 경사도는 1.5~2.5배정도 높은 상대적 가중치를 나타냈다. 이러한 가중치는 산사태 취약성도를 작성하는데 활용될 수 있다.

  • PDF

Real-time blending method development of radar-based QPF and numerical weather prediction models for hydrological application (수문학적 활용을 위한 레이더와 수치예보모델 예측강우의 실시간 병합 기법 개발)

  • Yoon, Seong-Sim;Lee, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.99-99
    • /
    • 2018
  • 기상이변으로 인해 국지성 호우의 발생 증가와 그로 인한 수재해 피해가 증가하고 있다. 따라서 수재해를 사전에 예측하고 저감하기 위해 비구조물적 대책인 실시간 홍수예보시스템 개발 및 운영에 관한 연구들이 수행되고 있다. 일반적으로 홍수예보시스템은 대피선행시간 확보를 위해서 초단시간 혹은 단기 수치예보모델을 수문해석모형이나 예보기법의 입력으로 활용하고 있다. 초단시간 예측은 기상레이더를 기반으로 외삽, 이류, 셀 추적 등의 기법을 활용하여 0~3시간 이내의 강수예측을 수행한다. 그러나 역학이나 물리적 과정이 동반되지 못하여 0~ 2시간 이내에서의 예측성은 높은 반면, 예측시간이 길어질수록 예측력이 낮아진다. 단기수치예보모델은 종관관측에 의존하면서 역학이나 물리과정을 동반하므로 0~6시간 혹은 12시간 이상의 예측을 수행하지만, 수치모델의 고유특성인 스핀업 등의 예측 불확실성이 내재되어 있어 예측 초기시간에서의 예측력이 낮은 한계가 있다. 따라서 강수예측의 정확도 향상을 위해 레이더와 수치예보모델의 병합기법이 필요하다. 본 연구에서는 통계분석을 통해 경험적으로 산출된 시간적 가중치를 이용한 기존 병합기법의 한계를 극복하면서 호우에 따른 가변성을 반영하는 실시간 병합기법을 개발하고, 수문학적인 활용성을 평가하고자 하였다. 사용된 예측강우 자료는 레이더 기반인 MAPLE, KONOS, 공간규모분할 예측강우와 수치예보모델 기반인 UM와 ASAPS의 예측강우이며, 제시한 가중치 산정기법은 직전 예측강우의 오차가 현 시점의 예측강우의 오차와 유사하다는 가정하에 오차항을 포함한 과거 1시간 예측강우들간의 가중치 조합이 과거 지상관측강우와의 평균제곱근오차가 최소가 되도록 화음 탐색법을 이용하여 찾는 것이다. 가중치 조합은 예측강우의 생산 시간 간격을 고려하여 매 10분마다 산정하며, 미래 3시간 예측까지 산정된 가중치를 적용한다. 수도권 영역을 대상으로 병합된 예측강우와 레이더 관측강우를 비교한 결과, 정량적 정확도가 향상됨을 확인할 수 있었다. 또한, 예측강우의 수문학적 활용성은 도시유출해석모의를 통해 평가하였다. 그 결과, 병합된 예측강우로 모의된 수심이 관측수심과 유사하여 수문학적 활용성 확인할 수 있었다.

  • PDF

The Comparison of Estimation Methods for the Missing Rainfall Data with spatio-temporal Variability (시공간적 변동성을 고려한 강우의 결측치 추정 방법의 비교)

  • Kim, Byung-Sik;Noh, Hui-Seong;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2011
  • This paper reviewed application of data-driven method, distance-weighted method(IDWM, IEWM, CCWM, ANN), and radar data method estimated of missing raifall data. To evaluate these methods, statistics was compared using radar and station rainfall data from Imjin-river basin. The range of RMSE values calculated for CCWM, ANN was 1.4 to 1.79mm, and the range of RMSE values estimated data used for radar rainfall data was 0.05 to 2.26mm. Spatial characteristics is considered to Radar rainfall data rather than station rainfall data. Result suggest that estimated data used for radar data can impove estimation of missing raifall data.

Weighting-Factored Evaluation Method for Determination of Seismic Retrofitting Schemes for Existing Bridges (기존 도로교의 내진성능향상 방법 선정을 위한 가중치 평가기법)

  • Ha, Dong-Ho;Lee, Ji-Hoon;Park, Kwang-Soon;Lee, Yong-Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.43-52
    • /
    • 2007
  • This study suggests a method to determine optimal seismic retrofitting schemes for existing bridges based on weighting-factored evaluation. According to the recognition for potential seismic risk, various kinds of retrofitting methods are applied to improve the seismic performance of existing bridges. However, the relevant technique is not available to select optimal retrofitting scheme for bridges now. This suggested method weights five factors, structural compatibility, economic efficacy, environmental factor, consturctability and maintenance, and draws out optimal seismic retrofitting schemes. The application of the developed method to one hundred sixty existing bridges verifies the adaptability of this method. As a result, this study provides an idealized retrofitting schemes, and the suggested method could be a guideline to determine the more cost-effective and optimal retrofitting schemes for existing bridges in Korea.

A Weight Boosting Method of Sentiment Features for Korean Document Sentiment Classification (한국어 문서 감정분류를 위한 감정 자질 가중치 강화 기법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.201-206
    • /
    • 2008
  • 본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.

  • PDF