• 제목/요약/키워드: 가중치 기반 결합

검색결과 146건 처리시간 0.021초

벡터와 신경망 모델에서 데이터 퓨전 기법을 이용한 정보검색의 효율성 향상 (Improving the Effectiveness of Information Retrieval Using Data Fusion Method in the Vector and Neural Network Model)

  • 최성환
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2001년도 제8회 학술대회 논문집
    • /
    • pp.137-142
    • /
    • 2001
  • 본 논문에서는 벡터모델과 신경망 모델을 이용하여 데이터 퓨전의 관점에서 다중증거로서 가중치, 문헌분리가, 엔트로피, 공기유사도를 적절히 결합하여 질의를 확장하는 방법을 제안한다. 실험결과 코사인 정규화 가중치 알고리즘, 문서길이 정규화 가중치 알고리즘과 결합하여 질의를 확장하는 것이 정규화시키지 않고 단순히 문헌빈도와 역문헌빈도의 조합을 이용한 가중치 알고리즘과 결합했을 때 보다 평균 정확률 향상이 더 높게 나타났다. 또한 다양한 공기기반 유사도를 이용하여 질의확장을 한 결과 벡터모델과 신경망 모델에서 코사인 공기유사도에 기반하여 질의확장한 경우가 다른 공기유사도에 비해 더 좋은 성능을 보였다.

  • PDF

MPEG-7 기반의 Digital Image Signature 개발 (Development of A Digital Image Signature Based-on MPEG-7 Descriptors)

  • 오원근;최경호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 하계학술대회
    • /
    • pp.505-508
    • /
    • 2011
  • 본 논문에서는 MPEG-7 비주얼 디스크립터를 기반으로 Digital Image의 효과적인 검색이 가능한 시스템의 개발하였다. MPEG-7에 포함되어 있는 비주얼 디스크립터 툴은 컬러, 텍스처, shape, motion, localization, 얼굴 인식 등을 포함한다. 이들 MPEG-7에서 제공하는 비주얼 디스크립터를 그대로 이용하여 Digital Image의 검색 시스템을 구현하기에는 시스템이 불필요하게 커질 수 있으며 Digital Image의 검색 성능이 그다지 높지 않다는 문제점이 발생한다. 구체적으로는 모든 디스크립터를 이용하여 데이터베이스에 존재하는 모든 Digital Imag에 대한 검색을 수행하기에는 많은 처리시간이 요구된다는 것과 어떠한 디스크립터를 이용해야 정확한 검색이 이루어질지 알 수 없기 때문이다. 이를 위해 본 논문에서는, MPEG-7 비주얼 디스크립터의 특성을 저작권위원회에서 제공받은 데이터베이스를 이용하여 분석하고 이들 디스크립터의 효과적인 결합 기술을 개발하였다. 기존의 디스크립터 결합 방식은 각각의 디스크립터에 동일한 가중치를 부여하고 검색을 수행하는 방식이었으나 본 논문에서는 정보이론을 기반으로 디스크립터의 가중치를 자동으로 부여하는 방식으로 검색 시스템을 구성하였다. 개발된 시스템은 기존의 동일한 가중치를 부여한 시스템에 비해서 데이터베이스에 대한 각 디스크립터의 특성을 반영하여 가중치를 결정하도록 구성하였다.

  • PDF

복합잡음 환경에서 결합가중치를 이용한 영상복원 필터 (Image Restoration Filter using Combined Weight in Mixed Noise Environment)

  • 천봉원;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.210-212
    • /
    • 2021
  • 현대사회는 4차 산업혁명의 영향으로 다양한 디지털 장비가 보급되고 있으며, 자동화 공정, 지능형 CCTV, 의료산업, 로봇, 드론 등 넓은 분야에서 사용되고 있다. 이에 따라 영상을 기반으로 동작하는 시스템에서 전처리 과정에 대한 중요성이 높아지고 있으며, 영상을 효과적으로 복원하기 위한 알고리즘이 주목받고 있다. 본 논문에서는 복합잡음 환경에서 영상을 복원하기 위해 결합가중치에 기반한 필터 알고리즘을 제안한다. 제안한 알고리즘은 입력 영상 및 필터링 마스크 내부의 화소값을 대상으로 공간적 거리에 따른 가중치와 화소값 차이에 따른 가중치를 각각 계산한다. 최종 출력은 두 가중치를 바탕으로 계산한 결합가중치를 마스크에 적용하여 필터링하였다. 제안한 알고리즘의 성능을 검증하기 위해 기존 필터 알고리즘과 비교하여 시뮬레이션하였다.

  • PDF

높은 검색 효과를 위한 다른 특성을 갖는 가중치 기법의 이용 (Using Different Properties of Weighting Schemes for High Retrieval Effectiveness)

  • 이준호
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 1995년도 제2회 학술대회 논문집
    • /
    • pp.33-36
    • /
    • 1995
  • 질의 또는 문서에 대한 상이한 표현 방법 또는 상이한 검색 기법은 서로 다른 집합의 문서들을 검색함이 알려져 왔다. 최근 이러한 특성을 이용하여 다양한 표현 방법 또는 검색 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음이 입증되었다. 본 논문에서는 질의와 문서에 대한 하나의 표현과 하나의 검색 기법하에서 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 기술한다. 문서의 형태를 분류하고 가중치기법의 특성을 기술한 후, 이를 기반으로 하여 서로 다른 특성을 갖는 가중치 기법은 서로 다른 형태의 문서를 검색함을 설명한다. 또한 실험을 통하여 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 입증한다.

  • PDF

자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템 (Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition)

  • 김경태;최재영
    • 한국융합학회논문지
    • /
    • 제9권4호
    • /
    • pp.47-55
    • /
    • 2018
  • 본 논문에서는 얼굴인식 성능 향상을 위해 얼굴 지역 영역 영상들로 학습된 다중개의 심층 합성곱 신경망(Deep Convolutional Neural Network)으로부터 추출된 심층 지역 특징들(Deep local features)을 가중치를 부여하여 결합하는 방법을 제안한다. 제안 방법에서는 지역 영역 집합으로 학습된 다중개의 심층 합성곱 신경망으로부터 추출된 심층 지역 특징들과 해당 지역 영역의 중요도를 나타내는 가중치들을 결합한 특징표현인 '가중치 결합 심층 지역 특징'을 형성한다. 일반화 얼굴인식 성능을 극대화하기 위해, 검증 데이터 집합(validation set)을 사용하여 지역 영역에 해당하는 가중치들을 계산하고 가중치 집합(weight set)을 형성한다. 가중치 결합 심층 지역 특징은 조인트 베이시안(Joint Bayesian) 유사도 학습방법과 최근접 이웃 분류기(Nearest Neighbor classifier)에 적용되어 테스트 얼굴영상의 신원(identity)을 분류하는데 활용된다. 제안 방법은 얼굴영상의 자세, 표정, 조명 변화에 강인하고 기존 최신 방법들과 비교하여 얼굴인식 성능을 향상시킬 수 있음이 체계적인 실험을 통해 검증되었다.

다중 가중치 기법을 이용한 검색 효과의 개선 (Improving Retrieval Effectiveness with Multiple Weighting Schemes)

  • 이준호
    • 정보관리학회지
    • /
    • 제12권2호
    • /
    • pp.213-223
    • /
    • 1995
  • 질의 또는 문서에 대한 상이한 표현 방법 또는 상이한 검색 기법은 서로 다른 집합의 문서들을 검색함이 알려져 왔다. 최근 이러한 특성을 이용하여 다양한 표현 방법 또는 검색 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음이 입증되었다. 본 논문에서는 질의와 문서에 대한 하나의 표현과 하나의 검색 기법하에서 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 기술한다. 문서의 형태를 분류하고 가중치 기법의 특성을 기술한 후, 이를 기반으로 하여 서로 다른 특성을 갖는 가중치 기법은 서로 다른 형태의 문서를 검색함을 설명한다. 또한 실험을 통하여 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 입증한다.

  • PDF

퍼지 추론을 이용한 질의 용어 확장 및 가중치 재산정 (Query Term Expansion and Reweighting by Fuzzy Infernce)

  • 김주연;김병만;신윤식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.336-338
    • /
    • 2000
  • 본 논문에서는 사용자의 적합 피드백을 기반으로 적합 문서들에서 발생하는 용어들과 초기 질의어간의 발생 빈도 유사도 및 퍼지 추론을 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의로 확장될 수 있는 후보 용어들로 선택하고, 발생 빈도 유사성을 이용한 초기 질의어-후보 용어의 관련 정도, 용어의 IDF, DF 정보를 퍼지 추론에 적용하여 후보 용어의 초기 질의에 대한 최종적인 관련 정도를 산정 하였으며, 피드백 문서들에서의 가중치와 관련 정보를 결합하여 후보 용어들의 가중치를 산정 하였다.

  • PDF

FFT와 초점정보를 이용한 상대적 깊이지도의 생성 (Generation of the Relative Depth Map using FFT and Focal Information)

  • 이진용;조진수;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.104-107
    • /
    • 2007
  • 인간은 초점정보를 이용하여 단안만으로도 공간의 깊이를 지각할 수 있다. 이것은 한 번에 하나의 대상물에만 초점을 맞출 수 있고 그 외의 부분은 흐림 현상을 유도함으로써 이루어진다. 이는 초점이 맞는 대상물체로부터 멀어지면 멀어질수록 흐림 현상이 강해지는 원리를 이용한 것으로 주파수 성분의 변화량에 대한 연산과 깊은 관련이 있다. 본 논문에서는 이와 같은 인간의 시각 시스템의 요소 중 하나인 초점정보를 모방하여 초점거리가 다른 각각의 이미지들에 각각의 가중치를 부여하였다. 그리고 각 이미지들을 일정 블록으로 각각 분할하여 초점이 가장 잘 맞는 블록을 찾아내어 하나의 이미지로 통합하였다. 이때 각 영역은 자신이 속했던 이미지의 가중치를 따르게 한다. 각 이미지에서 가장 포커스 수치가 높은 영역을 찾기 위한 방법으로 주파수 영역 기반 처리와 공간 영역 기반 처리를 결합 하였다. 주파수 기반으로는 FFT(Fast Fourier Transform)에서 고주파 부분의 영역을 뽑아내어 포커스수치를 계산하였으며, 공간 영역 처리 기반으로는 이웃픽셀과의 차이가 임계값이하인 것을 제외한 영역을 뽑아내어 저주파 영역의 연산을 제거하는 방법과 단순히 Laplacian measure만을 사용하여 저주파까지도 포함한 방법의 두 가지를 적용하였다. 최종적으로 3개의 포커스 측정값을 결합시켜 포커스 수치를 계산한 후 각 블록의 가중치에 맞게 하나의 이미지로 통합하여 상대적 깊이지도를 생성하였다.

감마 변환을 이용한 패치 기반의 다중 노출 영상 융합 (Patch based Multi-Exposure Image Fusion using Gamma Transformation)

  • 김지환;최현호;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.59-62
    • /
    • 2017
  • 본 논문에서는 평균 밝기 부분에 가중치 맵으로써 감마 변환에 기반한 선형 결합을 제안하고자 한다. 기존의 패치를 기반으로 한 가중치 맵은 평균 밝기 부분에서 영상 내 밝기 값이 한쪽으로 치우쳐 영상의 밝은 부분이 과포화 상태가 되어 세부 정보가 손실되는 단점이 있다. 이에 본 논문에서는 전역적 및 지역적 영상의 평균 밝기 값을 이용하여 감마 변환된 값을 선형 결합 시켜줌으로써 영역 내 세부 정보를 보존시키고 주관적 화질을 향상시켰다. 실험을 통해 결과를 분석하고 성능을 비교하여 기존 알고리듬에 비해 제안한 알고리듬이 우수함을 증명하였다.

  • PDF

저화질 영상 인식을 위한 화질 저하 모델 기반 다중 인식기 결합 (Multiple-Classifier Combination based on Image Degradation Model for Low-Quality Image Recognition)

  • 류상진;김인중
    • 정보처리학회논문지B
    • /
    • 제17B권3호
    • /
    • pp.233-238
    • /
    • 2010
  • 본 논문에서는 화질 저하 모델에 기반한 다중 인식기 결합을 이용하여 저화질 영상에 대한 인식 성능을 개선하기 위한 방법을 제안한다. 제안하는 방법은 화질 저하 모델을 이용해 특정 화질에 각각 특화된 복수의 인식기들을 생성한다. 인식 과정에서는 인식기들의 결과를 가중 평균에 의해 결합함으로써 최종 결과를 결정한다. 이 때, 각 인식기의 가중치는 입력 영상의 화질 추정 결과에 따라 동적으로 결정된다. 입력 영상의 화질에 특화된 인식기에는 큰 가중치를, 그렇지 않은 인식기에는 작은 가중치를 지정한다. 그 결과, 입력 영상의 화질 변이에 효과적으로 적응할 수 있다. 뿐만 아니라, 복수의 인식기를 사용하기 때문에 저화질 영상에 대하여 단일 인식 시스템보다 더욱 안정적인 성능을 나타낸다. 제안하는 다중 인식기 결합 방법은 화질을 고려하지 않은 다중 인식기 결합 방법이나, 화질을 고려한 단일 인식 방법과 비교하여 더 높은 인식률을 보였다.