본 논문에서는 벡터모델과 신경망 모델을 이용하여 데이터 퓨전의 관점에서 다중증거로서 가중치, 문헌분리가, 엔트로피, 공기유사도를 적절히 결합하여 질의를 확장하는 방법을 제안한다. 실험결과 코사인 정규화 가중치 알고리즘, 문서길이 정규화 가중치 알고리즘과 결합하여 질의를 확장하는 것이 정규화시키지 않고 단순히 문헌빈도와 역문헌빈도의 조합을 이용한 가중치 알고리즘과 결합했을 때 보다 평균 정확률 향상이 더 높게 나타났다. 또한 다양한 공기기반 유사도를 이용하여 질의확장을 한 결과 벡터모델과 신경망 모델에서 코사인 공기유사도에 기반하여 질의확장한 경우가 다른 공기유사도에 비해 더 좋은 성능을 보였다.
본 논문에서는 MPEG-7 비주얼 디스크립터를 기반으로 Digital Image의 효과적인 검색이 가능한 시스템의 개발하였다. MPEG-7에 포함되어 있는 비주얼 디스크립터 툴은 컬러, 텍스처, shape, motion, localization, 얼굴 인식 등을 포함한다. 이들 MPEG-7에서 제공하는 비주얼 디스크립터를 그대로 이용하여 Digital Image의 검색 시스템을 구현하기에는 시스템이 불필요하게 커질 수 있으며 Digital Image의 검색 성능이 그다지 높지 않다는 문제점이 발생한다. 구체적으로는 모든 디스크립터를 이용하여 데이터베이스에 존재하는 모든 Digital Imag에 대한 검색을 수행하기에는 많은 처리시간이 요구된다는 것과 어떠한 디스크립터를 이용해야 정확한 검색이 이루어질지 알 수 없기 때문이다. 이를 위해 본 논문에서는, MPEG-7 비주얼 디스크립터의 특성을 저작권위원회에서 제공받은 데이터베이스를 이용하여 분석하고 이들 디스크립터의 효과적인 결합 기술을 개발하였다. 기존의 디스크립터 결합 방식은 각각의 디스크립터에 동일한 가중치를 부여하고 검색을 수행하는 방식이었으나 본 논문에서는 정보이론을 기반으로 디스크립터의 가중치를 자동으로 부여하는 방식으로 검색 시스템을 구성하였다. 개발된 시스템은 기존의 동일한 가중치를 부여한 시스템에 비해서 데이터베이스에 대한 각 디스크립터의 특성을 반영하여 가중치를 결정하도록 구성하였다.
현대사회는 4차 산업혁명의 영향으로 다양한 디지털 장비가 보급되고 있으며, 자동화 공정, 지능형 CCTV, 의료산업, 로봇, 드론 등 넓은 분야에서 사용되고 있다. 이에 따라 영상을 기반으로 동작하는 시스템에서 전처리 과정에 대한 중요성이 높아지고 있으며, 영상을 효과적으로 복원하기 위한 알고리즘이 주목받고 있다. 본 논문에서는 복합잡음 환경에서 영상을 복원하기 위해 결합가중치에 기반한 필터 알고리즘을 제안한다. 제안한 알고리즘은 입력 영상 및 필터링 마스크 내부의 화소값을 대상으로 공간적 거리에 따른 가중치와 화소값 차이에 따른 가중치를 각각 계산한다. 최종 출력은 두 가중치를 바탕으로 계산한 결합가중치를 마스크에 적용하여 필터링하였다. 제안한 알고리즘의 성능을 검증하기 위해 기존 필터 알고리즘과 비교하여 시뮬레이션하였다.
질의 또는 문서에 대한 상이한 표현 방법 또는 상이한 검색 기법은 서로 다른 집합의 문서들을 검색함이 알려져 왔다. 최근 이러한 특성을 이용하여 다양한 표현 방법 또는 검색 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음이 입증되었다. 본 논문에서는 질의와 문서에 대한 하나의 표현과 하나의 검색 기법하에서 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 기술한다. 문서의 형태를 분류하고 가중치기법의 특성을 기술한 후, 이를 기반으로 하여 서로 다른 특성을 갖는 가중치 기법은 서로 다른 형태의 문서를 검색함을 설명한다. 또한 실험을 통하여 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 입증한다.
본 논문에서는 얼굴인식 성능 향상을 위해 얼굴 지역 영역 영상들로 학습된 다중개의 심층 합성곱 신경망(Deep Convolutional Neural Network)으로부터 추출된 심층 지역 특징들(Deep local features)을 가중치를 부여하여 결합하는 방법을 제안한다. 제안 방법에서는 지역 영역 집합으로 학습된 다중개의 심층 합성곱 신경망으로부터 추출된 심층 지역 특징들과 해당 지역 영역의 중요도를 나타내는 가중치들을 결합한 특징표현인 '가중치 결합 심층 지역 특징'을 형성한다. 일반화 얼굴인식 성능을 극대화하기 위해, 검증 데이터 집합(validation set)을 사용하여 지역 영역에 해당하는 가중치들을 계산하고 가중치 집합(weight set)을 형성한다. 가중치 결합 심층 지역 특징은 조인트 베이시안(Joint Bayesian) 유사도 학습방법과 최근접 이웃 분류기(Nearest Neighbor classifier)에 적용되어 테스트 얼굴영상의 신원(identity)을 분류하는데 활용된다. 제안 방법은 얼굴영상의 자세, 표정, 조명 변화에 강인하고 기존 최신 방법들과 비교하여 얼굴인식 성능을 향상시킬 수 있음이 체계적인 실험을 통해 검증되었다.
질의 또는 문서에 대한 상이한 표현 방법 또는 상이한 검색 기법은 서로 다른 집합의 문서들을 검색함이 알려져 왔다. 최근 이러한 특성을 이용하여 다양한 표현 방법 또는 검색 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음이 입증되었다. 본 논문에서는 질의와 문서에 대한 하나의 표현과 하나의 검색 기법하에서 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 기술한다. 문서의 형태를 분류하고 가중치 기법의 특성을 기술한 후, 이를 기반으로 하여 서로 다른 특성을 갖는 가중치 기법은 서로 다른 형태의 문서를 검색함을 설명한다. 또한 실험을 통하여 서로 다른 특성을 갖는 가중치 기법을 결합함으로써 보다 높은 검색 효과를 얻을 수 있음을 입증한다.
본 논문에서는 사용자의 적합 피드백을 기반으로 적합 문서들에서 발생하는 용어들과 초기 질의어간의 발생 빈도 유사도 및 퍼지 추론을 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의로 확장될 수 있는 후보 용어들로 선택하고, 발생 빈도 유사성을 이용한 초기 질의어-후보 용어의 관련 정도, 용어의 IDF, DF 정보를 퍼지 추론에 적용하여 후보 용어의 초기 질의에 대한 최종적인 관련 정도를 산정 하였으며, 피드백 문서들에서의 가중치와 관련 정보를 결합하여 후보 용어들의 가중치를 산정 하였다.
인간은 초점정보를 이용하여 단안만으로도 공간의 깊이를 지각할 수 있다. 이것은 한 번에 하나의 대상물에만 초점을 맞출 수 있고 그 외의 부분은 흐림 현상을 유도함으로써 이루어진다. 이는 초점이 맞는 대상물체로부터 멀어지면 멀어질수록 흐림 현상이 강해지는 원리를 이용한 것으로 주파수 성분의 변화량에 대한 연산과 깊은 관련이 있다. 본 논문에서는 이와 같은 인간의 시각 시스템의 요소 중 하나인 초점정보를 모방하여 초점거리가 다른 각각의 이미지들에 각각의 가중치를 부여하였다. 그리고 각 이미지들을 일정 블록으로 각각 분할하여 초점이 가장 잘 맞는 블록을 찾아내어 하나의 이미지로 통합하였다. 이때 각 영역은 자신이 속했던 이미지의 가중치를 따르게 한다. 각 이미지에서 가장 포커스 수치가 높은 영역을 찾기 위한 방법으로 주파수 영역 기반 처리와 공간 영역 기반 처리를 결합 하였다. 주파수 기반으로는 FFT(Fast Fourier Transform)에서 고주파 부분의 영역을 뽑아내어 포커스수치를 계산하였으며, 공간 영역 처리 기반으로는 이웃픽셀과의 차이가 임계값이하인 것을 제외한 영역을 뽑아내어 저주파 영역의 연산을 제거하는 방법과 단순히 Laplacian measure만을 사용하여 저주파까지도 포함한 방법의 두 가지를 적용하였다. 최종적으로 3개의 포커스 측정값을 결합시켜 포커스 수치를 계산한 후 각 블록의 가중치에 맞게 하나의 이미지로 통합하여 상대적 깊이지도를 생성하였다.
본 논문에서는 평균 밝기 부분에 가중치 맵으로써 감마 변환에 기반한 선형 결합을 제안하고자 한다. 기존의 패치를 기반으로 한 가중치 맵은 평균 밝기 부분에서 영상 내 밝기 값이 한쪽으로 치우쳐 영상의 밝은 부분이 과포화 상태가 되어 세부 정보가 손실되는 단점이 있다. 이에 본 논문에서는 전역적 및 지역적 영상의 평균 밝기 값을 이용하여 감마 변환된 값을 선형 결합 시켜줌으로써 영역 내 세부 정보를 보존시키고 주관적 화질을 향상시켰다. 실험을 통해 결과를 분석하고 성능을 비교하여 기존 알고리듬에 비해 제안한 알고리듬이 우수함을 증명하였다.
본 논문에서는 화질 저하 모델에 기반한 다중 인식기 결합을 이용하여 저화질 영상에 대한 인식 성능을 개선하기 위한 방법을 제안한다. 제안하는 방법은 화질 저하 모델을 이용해 특정 화질에 각각 특화된 복수의 인식기들을 생성한다. 인식 과정에서는 인식기들의 결과를 가중 평균에 의해 결합함으로써 최종 결과를 결정한다. 이 때, 각 인식기의 가중치는 입력 영상의 화질 추정 결과에 따라 동적으로 결정된다. 입력 영상의 화질에 특화된 인식기에는 큰 가중치를, 그렇지 않은 인식기에는 작은 가중치를 지정한다. 그 결과, 입력 영상의 화질 변이에 효과적으로 적응할 수 있다. 뿐만 아니라, 복수의 인식기를 사용하기 때문에 저화질 영상에 대하여 단일 인식 시스템보다 더욱 안정적인 성능을 나타낸다. 제안하는 다중 인식기 결합 방법은 화질을 고려하지 않은 다중 인식기 결합 방법이나, 화질을 고려한 단일 인식 방법과 비교하여 더 높은 인식률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.